

BURLINGTON ENVIRONMENTAL INC. PIER 91

HISTORIC SHORT-FILL ANALYTICAL DATA FROM PORT OF SEATTLE

Hand Delivered on October 20, 1994

ADMINISTRATIVE RECORD ITEM WUMBER TOTAL NUMBER OF PAGES COPY

DATE RESERVED TO THE PARTY OF T

UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration NATIONAL MARINE FISHERIES SERVICE

Northwest and Alaska Fisheries Center Environmental Conservation Division 2725 Montlake Boulevard East Seattle, Washington 98112

October 11, 1985

F/NWC6:COE

This went into T-91

Environmental Resources Section
Seattle District, U.S. Army Corps of Engineers
P.O. Box C-3755
Seattle, Washington 98124-2255

Dear Burt: Mr. Burt Hamner

Enclosed is a draft report summarizing results of the chemical ses and biological testing of Duwamish Waterway sediments g April 1985. Your thoughtful comments have a sediments seed between Don Brown and the sediments have the sediments and the sediments are the sediments. analyses and biological testing of Duwamish Waterway sediments collected during April 1985. Your thoughtful comments have been incorporated as discussed between Don Brown and you.

If you have any question, please contact me at 442-7737.

Sincerely,

1/ Chan

Sin-Lam Chan, PhD. Deputy Division Director

Enclosure

Core Samples
14 than 19 Composited to

C 6 & C 7 for analysis

went jute T-91

ANALYSES OF SEDIMENT SAMPLES FOR U.S. ARMY CORPS OF ENGINEERS SEATTLE HARBOR NAVIGATION PROJECT OPERATIONS AND MAINTENANCE SAMPLING AND TESTING OF DUWAMISH RIVER SEDIMENTS

Sin-Lam Chan, Michael H. Schiewe, Donald W. Brown Northwest and Alaska Fisheries Center 2725 Montlake Boulevard East Seattle, Washington 98112

DRAFT

INTRODUCTION

Sediment samples were collected in the Duwamish Waterway during April 1985 and tested to determine suitability for disposal at the open-water disposal site at Four-Mile Rock in Elliott Bay. Selected sediment characteristics were determined and concentrations of organic pollutants and six metals were measured. Sediment toxicity was assessed using amphipod (Rhepoxynius abronius) bioassays and bacterial bioluminescence (Microtox) assays.

METHODS

Sampling

Twenty sediment core samples were collected April 15-19, 1985 at stations 251-275 in the Duwamish River (Figure 1, Table 1) using a vibracore sampler with clear plastic sample tubes. Reference sediment was collected in Sequim Bay by Battelle Northwest Marine Laboratory using a 0.1-m² modified Van Veen grab sampler. The sampling in the Duwamish River was conducted by Battelle under separate contract with the US Army Corps of Engineers (COE). Sediment was also collected in Bowman Bay (West Beach, Whidbey Island) by National Marine Fisheries Service personnel for use as a reference sediment in biological assays. After sampling, only glass, stainless steel, aluminum, or Teflon were allowed to contact the sediment to be analyzed for organic chemicals. These materials were rinsed with CH₂Cl₂ and air dried prior to use.

To represent sediments as they would be dredged, each core was divided into 4' lengths. Each 4' length of a core was treated as a separate sample and was emptied into a stainless steel container and thoroughly mixed. Four 1 quart containers of each sediment sample were collected and stored at 4°C on shipboard. At the end of each day the samples were transferred to the laboratory and stored at 4°C. The sampling contractor (Battelle) collected a sample of each mixed core for sulfide analysis and submitted them to a testing laboratory. Also, two 4-oz bottles of each sample were frozen for possible future chemical analysis.

The samples were composited according to the scheme supplied by the COE as follows:

Composite sample number	Core <u>sample</u> numbers
C1 . C2 . C3 . C4 . C5 . C6 . C7 . C8 . C9	1, 3 2, 4, 5, 6 (below top 4') 6 (upper 4') 7, 9, 11 8, 10, 12, 13 14, 15, 16 17, 18, 19 20 Sequim Bay
T	

Equal volumes of each of the samples to be composited were placed in a stainless steel container and thoroughly mixed. Portions of each composite were taken for the following analyses: sulfides; As, Cd, Cu, Pb, Hg, and Zn; oil and grease; grain size distribution; total organic carbon; total solids and total volatile solids; organic chemicals; and bioassays. Four quarts of each composite were used for the amphipod bioassays and the remainder stored at 4°C for 30 days. Two 4-oz bottles of each composite sample were stored at -20°C for organic chemical analyses; two additional bottles of each composite sample were stored for any additional analyses.

Procedures for Chemical and Physical Analyses

Except for analyses for organic compounds, chemical and physical analyses were conducted using procedures described in EPA Technical Report EPA/CE-81-1.

Total Extractable Hydrocarbons (Oil and Grease)

Sediment was mixed with anhydrous magnesium sulfate and extracted with freon. The freon containing the extractable organic material was analyzed by infrared spectrophotometry in accordance with the instrument's operating manual.

Grain-Size Analysis

Grain-size analyses were performed to estimate percent distribution for gravel, sand, silt and clay. Approximately 25 g wet sample were sieved through 2-mm and 62-um screens. Material retained on the screens was dried at 100°C for 24 h and weighed to give "percentage of" gravel and sand, respectively. Material that passed the 62 um screens was submitted for pipet analysis to determine silt and clay.

Total Solids (TS) and Volatile Solids (VS)

For determining TS and VS, evaporating dishes were prepared by ignition for 60 min at >550°C and cooling in a desiccator. The dishes were weighed to the nearest 10 mg and stored in a desiccator until needed. 25-50 g of sediment were placed in a prepared evaporating dish and weighed to the nearest 10 mg. The dishes were placed in an oven at 103°C overnight. The dishes were cooled in an individual desiccator containing fresh desiccant and subsequently weighed and the results used to determine % water and TS.

Volatile solids and ash were determined by igniting the residue from the TS analysis in an electric muffle furnace at 550°C for 60 minutes. The residue and dish were cooled in a desiccator and reweighed and results used to calculate VS and percent ash.

Analysis of Trace Metals in Sediments

Sediment subsamples were taken from the well-homogenized samples. Subsamples were removed with a spatula and placed into acid-cleaned borosilicate jars and digested in \mbox{HNO}_3 .

Most metals (Pb, Cu, Cd, As and Zn) were measured using graphite furnace atomic absorption (AA) spectroscopy. Mercury was measured using the cold-vapor absorption technique. The quantitation limits, based on twice the standard deviation of triplicate samples near the detection limit were 0.01 ug/g dry weight for mercury, and 0.1 ug/g for Pb, Cu, Cd, As, and Zn.

Reagent blanks were analyzed with every set of 20 samples or fewer. The concentrations in the blanks were \leq to the detection limit (Table 5). The AA was calibrated by the method of standard additions according to the manufacturer's instructions. A calibration curve was prepared each day. All samples were analyzed under conditions which gave a response in the linear range. A standard in the linear range was analyzed with every ten samples. Dilutions were prepared from commercially available (1000 mg/L) AA standards.

Precision and accuracy of the laboratory methods were demonstrated prior to analyzing samples. National Research Council of Canada (NRCC) estuarine sediment reference material was analyzed with each set of 20 or fewer samples to check the accuracy of the analysis. Sample C1 was submitted as a blind duplicate to determine precision. All quality control data are part of this report.

Analysis of Organic Compounds in Sediment

Samples were analyzed for the compounds listed in Table 2 by the procedures set forth in NOAA Technical Memorandum NMFS F/NWC 64 (MacLeod et al. 1984) with slight modification. The procedure is briefly described below.

Ten grams of wet sediment were mixed with Na₂SO₄ and extracted with dichloromethane. Hexachlorobutadiene, endosulfans, endrin, and hexachlorocyclohexanes were analyzed in a portion of the total extract by gas chromatography (GC)-electron capture detection (ECD). The remaining extract was chromatographed using silica-alumina chromatography and Sephadex LH-20 column chromatography. Samples were analyzed using capillary column GC with flame ionization (FID) and ECD for quantitation, and mass spectrometer (MS) detector for confirming identities. Phthalates were quantitated using GC/MS.

Quality control measures for analyzing organic compounds are summarized here and in Appendix I. Internal standards were added at the beginning of sample preparation to calculate the concentrations of the analytes, and in the last step prior to GC analysis to calculate the recovery of the above internal standards. The gas chromatograph was routinely calibrated to confirm that responses remained consistent throughout sample analyses. This was accomplished by analyzing a standard solution 3 times before analyzing samples and after every 4 or fewer samples. With few exceptions the responses for each compound were within \pm 5%. Standard solutions have been prepared in duplicate and the concentrations for each compound was shown to be reproducible to within \pm 5%.

The tables in Appendix II show previous results of analyses of samples of our reference sediment for aromatic and chlorinated compounds, for laboratory blanks (LB), and laboratory blanks with added standards (LBAS). The detection limits for aromatic hydrocarbons was about 6 ng/g and for pesticides about 1 ng/g (Appendix II, Tables 1 and 2). Each of three chemists analyzed 3 samples of a reference sediment, 1 LB and 1 LBAS or a second reference sediment. The recovery of internal standards for each

sample was commonly \geq 50% and the results were reproducible to \pm 25% (or better) for the entire sample preparation and instrumental analysis. The analytes were not detected in the LB and the added analyte standards were generally recovered at about 100%. The relative standard deviation (or coefficient of variation) for each PAH for each chemist was generally $\leq \pm 25\%$. The same parameter among the three chemists generally was $\leq \pm 25\%$. All data from analyses of samples, blanks, reference materials, replicates, are included in this report.

Biological Assays

Amphipod Bioassays

Static, ten-day amphipod (Rhepoxynius abronius) lethality bioassays of fresh and aged sediments were conducted using the protocol of Swartz et al. (1985). Assays of fresh sediments were conducted as required by the EPA interim criteria for disposal of dredged sediments at the Four-Mile Rock open-water disposal site. Testing of aged sediments was undertaken at the request of COE to evaluate possible changes in the toxicity of dredged spoils occurring after placement in an open water disposal site.

Amphipods were collected at West Beach (Bowmans Bay) on Whidbey Island, Washington. Prior to testing, the amphipods were acclimated for at least 72 hrs to 15° C seawater ($26-28^{\circ}/_{\circ}$ salinity) and examined microscopically to confirm taxonomic identity and allow removal of those showing physical damage from collection. Test sediments were stored at 4°C and assayed within 10 days of collection.

Bioassays were conducted in 1-L glass beakers containing 175 mL sediment to create a 2 cm-deep layer. Before testing, the interstitial salinity of each sediment was determined and, since all were $> 25^{\circ}/\circ \circ$, no procedural adjustment was necessary. Beakers were then filled with 775 mL of charcoal-

and particulate (3um)-filtered seawater (salinity 26-28°/00), covered with watchglasses and placed in a 15°C waterbath. Seawater overlying the sediments was aerated without disturbing the surface sediment. Twenty-four hour lighting was maintained to discourage amphipod emergence from the sediment.

For each sediment sample tested, 20 amphipods were placed in each of 6 replicate beakers. Five beakers were not disturbed during the 10-day exposure period and used to evaluate survival. The sixth beaker was used for daily measurement of seawater pH and dissolved oxygen concentrations, and measurement of starting and ending sediment-interstitial water, Eh, salinity and pH.

For each sediment tested, an additional 6 beakers were prepared with 175 mL sediment and placed in a covered, ambient temperature (10-12°C) seawater bath for aging. Each beaker was provided with flowing seawater at a rate of 3 L/hr without disturbing or resuspending the sediment. After 35 days the beakers were transferred to a 15°C waterbath and static, 10 day amphipod bioassays were conducted as described above.

At the completion of each bioassay, the proportion of surviving amphipods was determined in each beaker. Differences in survival among the treatment groups was statistically evaluated using analysis of variance (ANOVA) and the Newman-Keul multiple comparison test.

Bacterial Bioluminescence (Microtox) Assay

Bacterial bioluminescence assays were conducted on organic extracts of fresh and aged (35 days in flowing seawater) sediments as described by Schiewe et al. (1985). Briefly, standardized dichloromethane extracts of each test sediment were prepared as outlined above (see chemistry section) and transferred (solvent-exchanged) to 100% ethanol. The extracts were stored at -20°C until tested.

For determination of EC50s (the concentration of extract causing a 50% reduction in light emitted), 4 concentrations of extract and a saline blank were tested in duplicate. All dilutions were prepared in a saline solution containing 2% NaCl in charcoal-filtered, double-distilled water. To begin testing, equal volumes of diluted extracts (or saline) and suspensions of the bioluminescent bacterium Photobacterium phosphoreum were mixed and placed in a temperature-controlled incubation block at 15°C. Working solutions of test bacteria were prepared daily by reconstituting a lyophilized suspension of bacteria (Microtox reagent, Beckman Instruments, Carlsbad, CA) in sterile, charcoal-filtered, double-distilled water. Bioluminescence was monitored at a wavelength of 491 nm at 0-time and after 5, 15 and 30 min of exposure using a Model 2055 Microtox Toxicity Analyzer (Beckman Instruments). For each sediment extract tested, a parallel solvent-only assay was run to allow adjustment of results for the contribution of the ethanol carrier.

Estimates of the EC50s were calculated using linear regression analyses. The percent inhibition of light emitted at each test concentration and time point were converted to a gamma value which has been defined as the ratio of light lost to light remaining. The gamma values were normalized for natural decline in light production over time and adjusted for the contribution of the solvent vehicle. The natural log gamma was regressed on the natural log of extract concentration and the EC50 was calculated from the regression equation. A mathematical procedure based on Fieller's Theorem was used to calculate a 95% confidence interval for each estimate of the EC50.

RESULTS

Physical Tests and Chemical Analyses

The concentrations of sulfides in the individual core samples ranged from 38 to 620 ug/g wet weight (Table 3). Particle size distribution data

for the composite sediment samples are included in Table 4. Sediments C1, C2, and C4 were characterized by a high proportion of sand, while sediments C3, C5, C6, C7, C8 and C9 contained a high percentage of silt and clay. The concentrations of metals, sulfides and selected physical characteristics for the composited sediment samples are shown in Table 5. Sediments C3, C5, C6, C7, C8 and C9 were characterized by relatively high levels of As, Cu and sulfides. Concentrations were highest in C8. Concentrations of oil and grease, and the remaining metals analyzed were also highest in C8.

Quality control (QC) for metals analyses included results from laboratory blanks (BL) and sediment analysis with and without added standards (spiked samples) (Table 6). The recoveries for As, Cd, Cu, Pb and Zn ranged from 75 to 115% and the maximum variation was \pm 20% of the mean. The concentrations of Cd and Cu measured in the BCSS-1 reference sediments and As, Cd and Cu in MESS-1 were within the 95% tolerance levels (Table 7). The concentrations of As, Pb, Zn and Cr in BCSS-1 and of Pb, Zn and Cr in MESS-1 were slightly outside the 95% tolerance level. If desired, the data in Table 6 can be used to correct the concentrations of metals listed in Table 4 for analytical bias.

The guidelines for quality assurance for these sediment analyses included (a) the recovery of internal standards added to each sample should be $\geq 50\%$ with reproducibility of $\pm 25\%$ or better; (b) analytes should not be present in laboratory blank samples at or above the limits of detection (generally 5 ng/g for AHs and 1 ng/g for CHs); (c) standards added to laboratory blanks and analyzed as a sample would be recovered at $\geq 50\%$ with reproducibility of $\pm 25\%$ or better; and (d) the concentrations of AHs and CHs determined for a reference sediment should be $\geq 50\%$ of the stated value with reproducibility of $\pm 25\%$ or better.

The concentrations of organic chemicals and corresponding QA data, are included in Tables 8-22. The concentrations of AHs and CHs in laboratory blanks (LB), laboratory blanks with added standards (LBAS), and reference sediment and the recovery of internal standards were generally within acceptable limits (Tables 8 and 16). The detection limits for AHs were generally <2 ppb and for CHs generally <0.5.

The concentrations of AHs in C1 and C2 were similar to those in C9, (Sequim Bay), whereas AH concentrations in C3, C4, C5, C6, C7 were somewhat higher than in C9 (Tables 8 and 9). The highest concentrations of AHs were measured in C8. The concentrations of PCBs were relatively low in C1 through C7, but somewhat higher than the Sequim Bay sediment (2.7 ppb). The concentrations were highest in C8 (3900 ppb, Tables 9, 10). Chlorinated pesticides were generally not detected (detection limits were generally less than 1 ppb). The main exceptions were the concentrations of o,p-DDT and p,p-DDT in C7, (42 and 22 ppb, respectively, Tables 11, 12).

The concentrations of phthalates, except bis(2-ethylhexyl)phthalate (DEHP), were generally <20 ppb (Tables 14-16). The concentrations of DEHP in the Duwamish samples ranged from 120 ppb to 2800 ppb compared to 100 ppb in the Sequim samples and 33 and 35 ppb in the 2 blank samples. The higher concentrations of DEHP in the Duwamish sediments may have been due, in part, to phthalates from the plastic pipe used for sample collection.

The concentrations of the other compounds listed in the Four-Mile Rock

Interim Criteria are included in Tables 17-19. Most of these chemicals

were not detected. Limits of detection were generally <10 ppb. Dichlorobenzenes

were present in the laboratory blank samples at concentrations ranging from

6.7 to 25 ppb , therefore, a concentration of >40 ppb was adopted as a real

value (approximately two times the concentration in the blanks). This 40 ppb

value was exceeded in sample C2 (94 ppb), possibly due in part to laboratory contamination. Hexachlorobutadiene (HCBD), endosulfans, endrin, and hexachlorocyclohexanes were not detected (detection limits were generally <2 ppb, Tables 20-22).

Amphipod Bioassays

The results of 10-day amphipod bioassays of fresh and aged Duwamish Waterway sediments are summarized in Table 23. Selected physical properties of the sediments and their interstitial water (i.e., pH, salinity, mean Eh) are shown in Appendices III and IV. Dissolved oxygen concentrations were above 8 mg/L during all bioassays.

Amphipod survival in the fresh sediments ranged from a high of 96% in Duwamish Waterway sediments C1 and C2, to a low of 39% in Duwamish Waterway sediment C8. Survival was significantly different (lower, P=0.05) in Duwamish Waterway sediments C6, C7, C8, and the Sequim Bay fine-grain control sediment when compared to that in the Bowman Bay control sediment. Moreover, amphipod survival in sediments C6, C7, and C8 was significantly different (lower, P=0.05) than that in the Sequim Bay sediment.

In contrast to the differential survival observed in amphipod bioassays of fresh sediments, no significant differences were observed in survival of amphipods exposed to any of the aged sediments. Percent survival ranged from a high of 97% to a low of 85%; 94% survival was observed in the aged Bowman Bay native sediment.

Bacterial Bioluminescence Bioassays

Results of bacterial bioluminescence assays of organic extracts of fresh and aged sediments are summarized in Table 24. The estimated 15 min EC_{50} s of extracts of the Duwamish Waterway sediments ranged from 0.06 to 0.45 uL/mL, and were all significantly different (P=0.05) than the extract

of Bowman Bay sediment (EC $_{50}$ = 3.29 uL/mL). Despite this narrow range of toxicities among the extracts of Duwamish Waterway sediment, statistical analyses (Spearman Rank Correlation) indicated a significant association between 15-min EC $_{50}$ s and the sum of the measured aromatic hydrocarbons (r_{s} =0.862, P=0.02).

The estimated 15-min EC $_{50}$ s of extracts prepared from aged sediments ranged from a low of 0.04 uL/mL for sediment C-8 to a high of 0.61 uL/mL for sediment C2. Extracts of sediments C1, C2 and the Bowman Bay sediment all showed a decline in toxicity after aging, while extracts of sediments C4, C5 and C6 showed increased toxicity. As was the case with extracts of fresh sediments, the extracts of the aged Duwamish Waterway sediments were all significantly (P=0.05) more toxic than the extract of aged Bowman Bay control sediment.

DISCUSSION

Chemistry

The concentrations of chemicals in Duwamish Waterway sediments C1 through C7 were generally below the criteria set for disposal of dredged materials at Four-Mile Rock. In contrast, the concentrations of most organic chemicals and metals in C8 exceeded these criteria. Exceptions were the concentrations of arsenic which exceeded the criteria by about 6% and 18% in sediments C5 and C7, respectively. However, the As concentration in Sequim Bay sediment (C9) exceeded the criteria by about 30%. It should be noted that different analytical methods could give rise to considerable differences in results of As analysis. The criteria are based on data from another laboratory and most likely the analytical methods used for As were not the same as that used for these samples. The concentrations for As in reference materials analyzed with these samples (Table 7) were 31%

and 4% higher than the published mean concentration. The concentration of DDT in C7 (29 ppb) exceeded the criteria (8 ppb). It should be noted that 29 ppb for DDT, a chemical generally regarded as having similar toxicity to PCBs, is a relatively low concentration and may not be environmentally significant.

Amphipod Bioassays

Results of amphipod bioassays indicated three of the eight Duwamish Waterway sediments (C6, C7 and C8) and the Sequim Bay sediment were significantly more toxic than the Bowman Bay native control sediment. Since a high proportion of clay and silt are known to adversely affect amphipod survival (Swartz et al. 1985), the fine-grain nature of all of these sediments probably contributed to the observed toxicity. However, sediments C6, C7 and C8 were also significantly more toxic than the Sequim Bay sediment. Thus grain size alone does not appear to account for all the toxicity of the Duwamish Waterway sediments, and other factors (e.g., concentrations of chemical contaminants, sulfides) must be considered.

An interesting finding of these studies was the apparent reduction in toxicity which occurred when the Duwamish Waterway sediments were aged in flowing seawater for 35 days and then retested in amphipod bioassays. This reduced toxicity may, however, be an artifact of the test methodology. During aging, a thin (ca. 2 mm) crust of reddish-brown material formed at the sediment-seawater interface, probably as a result of the activities of chemotrophic bacteria. When amphipods were introduced into the beakers at the start of bioassays, they tended to remain on the sediment crust and rarely burrowed beneath the surface. This modified burial behavior greatly reduced sediment-amphipod contact and may alone explain the increased survival. These results suggest the limited usefulness of this method of laboratory

aging as a means of predicting possible changes in sediment toxicity in the environment and further research is needed.

Bacterial Bioluminescence Bioassays

The results of bacterial bioluminescence assays of organic extracts indicated significantly greater toxicity associated with each of the Duwamish Waterway sediments when compared to Bowman Bay reference sediment. Moreover, differences in toxicity among Duwamish Waterway sediments were significantly correlated with the concentrations of aromatic hydrocarbons.

The greater toxicity of Duwamish Waterway sediments compared to Bowman Bay sediment was also supported by bioluminescence assays of aged sediments. All extracts of Duwamish Waterway sediments were significantly more toxic than that of the Bowman Bay sediment. Noteworthy were the apparent changes in toxicity produced by the aging process; however, additional data, including chemical analyses, would be needed to judge the significance of these changes.

CONCLUSIONS

Results of chemical analyses and amphipod bioassays indicate Duwamish Waterway sediment C1, C2, C3, C4 and C5 met the criteria for disposal at the Four-Mile Rock disposal site. In contrast, sediment C8 exceeded the disposal criteria based on both high levels of chemical contaminants and significant mortality in amphipod bioassays. Sediments C6 and C7, while containing concentrations of chemical contaminants generally lower than the disposal criteria, produced significant mortality in amphipod bioassays. Results of bacterial bioluminescence (Microtox) analyses also suggested sediments C6, C7 and C8, as well as C3 and C5, were toxic.

REFERENCES

- EPA/COE Technical committee on criteria for dredged and fill material, EPA Technical Report EPA/CE-81-1 (1981).
- MacLeod, W.D., Jr., D.W. Brown, A.S. Friedman, O. Maynes, and R. Pearce. 1984. Standard analytical procedures of the NOAA National Analytical Facility, 1984-5: Extractable toxic organic compounds, NOAA Tech. Μεπο NMFS F/NWC6-64, 100 p.
- Schiewe, M.H., E.G. Hawk, D.I. Actor, and M.M. Krahn.
 1985. Use of a bacterial bioluminescence assay to assess toxicity
 of contaminated marine sediments. Can. J. Fish. Aquat. Sci. 42
 (In press, scheduled July 1985).
- Swartz, R.C., W.A. DeBen, J.K.P. Jones, J.O. Lamberson and F.A. Cole. 1985. Phoxocephalid amphipod bioassay for marine sediment toxicity, pp. 284-307 in Aquatic Toxicology and Hazard Assessment: Seventh Symposium. ASTM 854 R.D. Cardwell, R. Pudy and R.C. Bakner, eds. American Society for Testing and Materials, Philadelphia, PA.

Figure 1. Sediment Sampling Station Locations for Dredged Material Characterization.

 $\mbox{ABLE1.}$ Sampling locations in the Duwamish Waterway and the compositing scheme.

Single No.	Station Designation	Offset	Length of core from surface	Sediment type in 1984	Composite
1	274 + 50	70' East	4'	sand	No
2	275 + 00	70' West	4 '	sand	2
3	273 + 00	70' East	4 •	sand	1
4	273 + 50	70' West	6'	sand	2
5	272 + 00	70' West	6'	sand	
6 upper	271 + 50	70' East	4 '	sand	2
6 bottom	271 + 50	70' East	4'-8'	sand	3
7	270 + 00	40' West	6'		2
8	269 + 00	40' East	5'	sand	4
9	268 + 00	40' West	6'	silt & sand	5
0	266 + 00	40' East	6'	sand	4
1	265 + 00	40' West	6'	silt & sand	5
2	263 + 00	CLa	4'	sand	4
3	261 + 00	CL	4'	silt & sand	5
	258 + 50	CL		silt & sand	5
	257 + 00	CL	5'	silt	6) <-6
	255 + 00	CL	4'	silt	6 / Possibly
	254 + 00	CL	3'	silt	6
	252 + 50	CL	5'	silt	7 \ 1-9
	251 + 00	CL	5'	silt	7
			4'	silt	7
b	Sequim Bay	75' East	5'	silt	8

a CL = Center line

Table 2. Organic chemicals to be analyzed in Duwamish sediments and clams from bloaccumulation studies.

Column 1

naphthalene acenaphthylene 2-methylnaphthalene 1-methylnaphthalene biphenyl 2,6-dimethylnaphthalene acenaphthene fluorene phenanthrene anthracene 1-methylphenanthrene dimethylphenanthrene fluoranthene pyrene benz[a]anthracene chrysene benzo(b)fluoranthene benzo(k)fluoranthene benzo[e]pyrene benzo[a]pyrene perylene indeno[1,2,3-cd] pyrene dibenz(a,h)anthracene benzo(ghi)perylene

dimethyl phthalate
diethyl phthalate
di-n-butyl phthalate
di-n-octyl phthalate
n-butyl benzyl phthalate
bis (2-ethylhexyl)phthalate

lindane (gamma-BHC) heptachlor aldrin heptachlorepoxide alpha-chlordane trans-nonachlor dieldrin mirex O.D'-DDE P.P'-DDE ODG-CO p.p'-DDD o,p'-DDT D.D'-DDT dichlorobiphenyls (b) trichlorobiphenyls tetrachlorobiphenyls pentachlorobiphenyls hexachlorobiphenyls heptachlorobiphenyls octachlorobiphenyls nonachlorobiphenvis

hexachlorobenzene

alpha hexachlorocyclohexane beta hexachlorocyclohexane delta hexachlorocyclohexane bis (2-chloroethyl) ether N-nitrosodi-n-propylamine nitrobenzene trimethylcyclohexenone bis (2-chloroethoxy) methane 2.6-dinitrotoluene 2.4-dinitrotoluene 1.2-diphenylhydrazine azobenzene benzidine 3.3'-dichlorobenzidine 1.2-dichlorobenzene 1.3-dichlorobenzene 1,4-dichlorobenzene 4-chlorophenyl phenyl ether 4-bromophenyl phenyl ether endrin isophorone alpha-endosulfan beta-endosulfan

Column 2

toxaphene

a The compounds in column 1 are routinely analyzed by NAF and are associated with the QA detailed in the report and in attachment 1. The compounds in column 2 are not routinely analyzed and QA for these compounds is not as extensive as that for column 1 chemicals. The concentrations of the compounds in column 2 were calculated using standards obtained from EPA or Foxboro Analabs. Recovery data were not determined for the compounds in column 2.

b The concentrations of the individual chlorinated biphenyls can be added to give a concentration of total PCB's.

Table 3. Concentrations of sulfides in individual sediment samples.

	sulfi	de	
(ug/g	wet	we	ight)

	1.3.3
station 1	38
station 2	140
station 3	210
station 4	240
station 5	93
station 7	360
station 8	450
station 9	150
station 10	270
station 11	280
station 12	370
station 14	270
station 16	440
station 19	320
station D-6	230
station D-13	370
station D-15	250
station D-17	330
station D-18	540
station D-20	620
station D-6 lower	83
station D-6 upper	300
5 St 1 20	

Table 4. Particle size distribution (%, by weight).

				a				
			C 1	. C 1	C 2	С 3	C 4	
class	microns	Phi (Ø)						
gravel	> 2000	> -1	4.1	1.7	4.5	5.7	6.4	
very coarse sand	2000-850	-1 to +0.2	10.6	10.0	14.1	4.8	2.2	
coarse sand	850-500	+0.2 to +1	26.1	42.6	30.7	7.9	11.9	
medium sand	500-250	+1 to +2	36.8	21.8	29.8	11.8	37.0	
fine sand	250-125	+2 to +3	7.3	8.5	8.6	18.8	16.8	*
very fine sand	125-62	+3 to +4	2.0	2.0	2.4	13.9	9.1	
coarse silt	62-45	+4 to 4.7	< 1.0	< 1.0	< 1.0	2.6	2.9	
medium silt - clay	< 45	< 4.7	13.1	13.4	9.9	34.5	13.7	

a Submitted as a blind duplicate.

T-41	

			C 5	^L C6	C 7	C 8	C 9	
class	microns	Phi (Ø)						
gravel very coarse sand coarse sand medium sand fine sand very fine sand coarse silt medium silt - clay	> 2000 2000-850 850-500 500-250 250-125 125-62 62-45 < 45	> -1 -1 to +0.2 +0.2 to +1 +1 to +2 +2 to +3 +3 to +4 +4 to 4.7 < 4.7	2.9 < 1.0 2.5 12.4 16.8 19.7 3.4 42.3	< 1.0 < 1.0 1.2 10.3 25.8 17.8 5.0 39.9	< 1.0 < 1.0 < 1.0 7.0 21.5 17.7 4.6 49.2	5.1 < 1.0 < 1.0 < 1.0 < 1.0 2.1 5.2 2.8 84.8	< 1.0 < 1.0 < 1.0 < 4.0 6.0 16.7 4.5 68.8	

Table 5. Concentrations of metals and sulfides and selected physical characteristics for sediment samples (dry weight).

	C 1 4/19/85	a C 1 4/19/85	C 2 4/19/85	C 3 4/19/85	C 4	JJ (ui
oil and grease (ug/g)	280	190 ¬ b	260	1600	4/19/85	
sulfide (ug/g)	63	210— 150	70	310	150 170	
total organic carbon (%)	0.36	0.42	0.63	3.5	2.8	
total solids (%)	76	75 —	74	50	63	
total volatile solids (%)	2.6	76 — 2.5 —	3.1	11	7.2	
arsenic (ug/g)	8.6	2.5 8.7	12	17	14	
cadmium (ug/g)	0.13	0.13	0.15	0.45	0.26	
copper (ug/g)	14	15	16	32	22	
lead (ug/g)	9.4	7.8	8.9	20	14	
zinc (ug/g)	57	58	57	91	71	
mercury (ug/g)	0.01	0.01	0.01	0.04	0.02	

<sup>a Submitted as a blind duplicate.
b The bracket (☐) indicates data from duplicate analysis of one sample digest.</sup>

1-91

Table 5. (cont.)

			,				
	C 5 4/19/85	C 6	C 7 4/19/85	C 8 4/19/85	C 9 4/19/85	blank analysis	blank analysis
oil and grease (ug/g)	120	170	360	3000	< 150	-	-
sulfide (ug/g)	190 7 a	390	360	960	410	-	-
total organic carbon (%)	2.1	2.3	1.8	2.2	1.4	- 1	-
total solids (%)	56]	54	60	50	37	-	
total volatile solids (%)	8.2 8.1	8.2	8.1	8.7	7.6	-	_
arsenic (ug/g)	18	17	18]	34	22	< 0.005	< 0.005
cadmlum (ug/g)	0.42	0.35	0.38	3.1	0.64	0.0002	0.0002
copper (ug/g)	- 32	32	35 35]	120	35	< 0.02	< 0.02
lead (ug/g)	17	17	25 22]	160	12	0.003	0.004
zinc (ug/g)	84	79	87 J	270	93	0.14	0.16
mercury (ug/g)	0.04	0.07	0.05	0.42	< 0.03	-	

a The bracket () indicates data from duplicate analysis of one sample digest.

Table 6. Recovery of metals from sediments with added standards (samples spiked to give 0.4 mg/L in final solution).

composite C-8	sample wt. (g)	spiked sample wt.	concentration in sample solution (mg/l)	theoretical concentration in spiked sample solution (mg/l)	measured concentration in spiked sample solution (mg/l)	% recovery
arsenic	2.0461	2.1438	0.27	0.68	0.78	114.7
cadmium	2.0461	2.1438	0.0041	0.4041	0.37	92.5
copper	2.0461	2.1438	0.47	0.89	0.86	96.6
lead	2.0461	2.1438	0.24	0.65	0.68	104.6
zinc	2.0461	2.1438	1.80	2.28	2.13	93.4
a marine sediment					.	
arsenic	2.1353	2.0207	0.45	0.83	0.62	74.7
cadmium	2.1353	2.0207	0.0241 a	0.422	0.364	86.3
copper	2.1353	2.0207	0.0228-J 0.76	1.12	1.13	100.9
lead	2.1353	2.0207	0.24	0.63	0.54	85.7
zinc	2.1353	2.0207	1.25	1.58	1.57	99.4

a The bracket (3) indicates data from duplicate analysis of one sample digest.

Table 7. Concentrations of metals in standard reference materials.

metal	BCSS-1 certified value (95% tolerance level)	BCSS-1 analyzed	MESS-1 certified value (95% tolerance level)	MESS-1 analyzed
arsenic (ug/g)	11.1 ± 1.4	147b	10.6 ± 1.2	10.1
cadmium (ug/g)	.25 ± 0.04	0.29	.59 ± 0.10	11.9 0.47
copper (ug/g)	18.5 ± 2.7	16.8	25.1 ± 3.8	0.51 22.8
lead (ug/g)	22.7 ± 3.4	16.9—I 17.3—	34.0 ± 6.1	23.5 20.1
zinc (ug/g)	119. ± 12.	16.9 — 84.6 —	191. ± 17.	20.6 161.
chromium (ug/g)	123 ± 14	86.9 — 93.8 — 95.5 —	71. ± 11.	156. 57. 56.

<sup>a National Research Council of Canada certified marine sediment reference materials.
b The bracket (_) indicates a duplicate instrumental analysis of a sample digest.</sup>

Table 8. Concentrations of aromatic hydrocarbons in sediment samples, ng/g (ppb) dry weight.

		C 47-2	-		C 47-2			7-2	2		4	c : 7-2:		٠	C 47-2	4		0 47-2	5 240
naphthalene 2-methylnaphthalene		2.0			2			7	1			11			5	8			
1-methylnaphthalene		5.5			6			11	0			13		<					4
biphenyl		5.1			5				6			26		<					7
2,6-dimethylnaphthalene	<	1.8		<				· 2.	7			7.4		<				6.	
acenaphthylene -d		3.5			25			2	2			11			4.			7.	
cenaphthene	<	1.9		<	1.6		<			<		3.9		<	2.		<	1.	
luorene	<	1.9		<	1.6		<	1.5	9	<		3.9		<	2.		•	9.	
phenanthrene	<	1.7		<	1.8			2.0		<		3.5		<	2.		<	2.	
inthracene		23			31			5				150			80		•	120	
-methylphenanthrene	,	2.1			6.1			7.6				15			6.5			13	
luoranthene	<	1.3			15			10				32			9.4			24	
yrene		37			35			64			2	220			110			160	
enz[a]anthracene		31			29			52			2	230			120			160	
nrysene		7.4			6.2			17			1	00			33			140	
enzofluoranthenes-e		21			22			36			2	60			57			110	
enzo[e]pyrene		7.4			7.5			18			1	50			29			76	
enzo[a]pyrene		5.5			9.8			7.7				86			28			51	
erylene		5.6			5.6			7.2				61			26			49	
denol1,2,3-cd]pyrene -f		20			21			21				84			33			60	
benz(a,h)anthracene	<	3.0		<	2.4			4.4				44			21			29	
nzolghi]perylene -f	<	3.0			9.5		<	2.9		<		.0		<	3.0		<	3.3	
inzoldinibei Alelie -l		4.5		<	2.4			12				93			42		`	92	
covery of naphthalene-d8		100	8		80	62		70	_									12	
covery of acenaphthene-d10		93	7		84	%		78	%			78	8		71	8		72	8
covery of perylene-d12		47	8		52	8		85 60	%			38 54	%		92 78	%		80	%
nple weight, g		10 11			40.00								/•		70	8		58	8
dry weight		10.11 74.51			10.06			10.26			10.2	2.1			10.09			10.29	
. ,		74.51			77.33			73.60			48.8	5			60.75			52.89	

a The concentrations of compounds above biphenyl were calculated using naphthalene-d8 as the internal standard; the concentrations of compounds below pyrene were calculated using perylene-d12; and the remainder were calculated using acenaphthene-d10.

b The "less than" symbol (<) indicates that the chemical was not detected and that the value is the detection limit. c Duplicate analysis.

d Acenaphthylene was calculated using acenaphthene response.

e The concentrations of the benzofluoranthenes are reported as the sum of the concentrations of the -b, -j and -k isomers.

f Indeno[1,2,3-cd]pyrene and benzo[ghi]perylene were calculated using dibenz[a,h]anthracene response.

Table 9. Concentrations of aromatic hydrocarbons in sediment samples, ng/g (ppb) dry weight.

			7		-91	<u> </u>	c sumples, i		I (PF	oo, ary n	reign
		C 6 47-241			C 7 47-22		C 8 47-22			C 9 47-24	
naphthalene 2-methylnaphthalene 1-methylnaphthalene biphenyl 2.6-dimethylnaphthalene acenaphthylene -d acenaphthene	«	6.0 9.2 21 14 12 3.6 3.6		<	8.3 9.7 13 4.3 11 1.7 23		99 140 83 29 190 24 00		· · ·	3.0 9.1 7.4 7.9 9.1 37 2.8	
fluorene phenanthrene anthracene 1-methylphenanthrene fluoranthene pyrene		4.8 97 7.4 13 170			14 190 26 27 300 270		91 560 210 170 1100		<	2.5 40 2.3 4.4 53 35	
benz(a)anthracene chrysene benzofluoranthenes-e benzo(e)pyrene benzo(a)pyrene perylene indeno(1,2,3-cd)pyrene -f dibenz(a,h)anthracene benzo(ghi)perylene -f	<	50 120 59 56 44 77 19 5.9	<	•	180 250 200 100 95 150 59 4.3 67		590 1400 720 490 400 540 170 42		< ·	2.7 16 9.1 10 8.3 35 6.6 3.3 8.3	
recovery of naphthalene-d8 recovery of acenaphthene-d10 recovery of perylene-d12		80	% %		87 87 42	% %	98 94 49	% %		70 77 65	% %
sample weight, g % dry weight		10.41 52.85			9.97 54.72		9.99 48.72			10.50 38.72	

a The concentrations of compounds above biphenyl were calculated using naphthalene-d8 as the internal standard; the concentrations of compounds below pyrene were calculated using perylene-d12; and the remainder were calculated using acenaphthene-d10.

b The "less than" symbol (<) Indicates that the chemical was not detected and that the value is the detection limit.

c Sample 47-226 was quantitated by GC/MS.

d Acenaphthylene was calculated using acenaphthene response.

e The concentrations of the benzofluoranthenes are reported as the sum of the concentrations of the -b, -j and -k isomers.

f Indeno[1,2,3-cd]pyrene and benzo[ghi]perylene were calculated using dibenz[a,h]anthracene response.

Table 10. Concentrations of aromatic hydrocarbons in blank samples and Duwamish III reference sediment, ng/g (ppb) dry weight.

					ď			ng/g (ppb) dry weight	
		47-232	blank	47-244	spk. sed. 47-243	DUW 111 47-230	e X (N-9)	C V	
naphthalene	<	1.7	<	1.9	97	280	7.0		
2-methylnaphthalene	<	1.7	<	1.9	91	140	360	56	
1-methylnaphthalene	<	1.7	<	1.9	110	90	170	18	
biphenyl	<	1.7	<	1.6	94	27	120	33	
2.6-dimethylnaphthalene	<	1.6	<	1.6	91		41	19	
acenaphthylene -g	<	1.8	<	1.7	-	85	75	14	
acenaphthene	<	1.8	<	1.7	92	< 1.9	-	~	
Tuorene	<	1.6	<	1.6		320	350	14	
henanthrene	<	1.5	ζ.	1.5	100	270	370	24	
inthracene	<	1.4	`	1.4	100	2000	2400	12	
-methylphenanthrene	<	1.4	`		95	440	810	72	
luoranthene	-	5.7	`	1.4	100	180	220	14	
yrene	<	1.4		1.4	98	3000	3600	8	
enz[a]anthracene	ż		<	1.4	98	3500	3900	10	
hrysene	`	1.6	<	1.7	120	1800	1800	17	
enzofluoranthenes-h		1.8	<	1.8	100	2900	3000	17	
enzolelpyrene		4.6	<	1.2	-	3000	-	-	
enzolalpyrene	۲	1.7	<	1.7	110	1800	1900	16	
erylene	<	1.7	<	1.7	95	1800	2000	15	
	<	1.8	<	1.7	97	580	640		
deno[1,2,3-cd]pyrene -i	<	1.9	<	2.1	-	1200	040	19	
benzla,hlanthracene	<	1.8	<	2.1	78	330	7.40	~	
nzolghilperylene -i	<	1.8	<	2.1	-	980	340	21	
covery of naphthalene-d8		93 %		64 0				_	
covery of acenaphthene-d10		90 %		64 %	80 %	90 %	80 %	9	
covery of perylene-d12				71 %	96 %	90 %	93 %	5	
, so por promo di 2		77 %		61 %	81 %	65 %	71 %	13	
nple weight, g		_		_	_	10.15			
dry weight					_	10.15			

a The concentrations of compounds above biphenyl were calculated using naphthalene-d8 as the internal standard: the concentrations of compounds below pyrene were calculated using perylene-d12; and the remainder were calculated using acenaphthene-d10.

b The "less than" symbol (<) indicates that the chemical was not detected and that the value is the detection limit.

d The percent recoveries of analyte standards added to a duplicate of C 2 were obtained after subtracting the concentrations

e Mean for previously analyzed Duwamish III reference sediment.

f Coefficient of variation for previously analyzed Duwamish III reference sediment.

g Acenaphthylene was calculated using acenaphthene response.

h The concentrations of the benzofluoranthenes are reported as the sum of the concentrations of the -b. -j and -k isomers.

I Indeno[1,2,3-cd]pyrene and benzo[qhi]perylene were calculated using dibenz[a,h]anthracene response.

Table 11. Concentrations of chlorinated compounds in sediment samples, ng/g (ppb) dry weight.

		47-2	1 27		C 47-2			C 47-2	2 37		· C	3 38		47-2	39		47-:	C 5
hexachlorobenzene		•		<	0.9		<	0.9	5		0.5			0.	5			
lindane (gamma-BHC) heptachlor	<	0.		<	0.5		<	0.5	5	(.5
aldrin	<	0.9		<	0.8		<	0.5	5	(<					.5
heptachlorepoxide	<	0.5		<	0.5		<	0.5	5	<			<	0.		`		.5
alpha-chlordane	<	0.5		<	0.5		<	0.5	5	<			<	0.		(0	
trans-nonachlor	<	0.5		<	0.5		<	0.5	,		0.7		<	0.9			0.	
dieldrin	<	0.5		<	0.5		<	0.5	;		1.0		<	0.5			0.	
mirex	<	0.5		<	0.5		<	0.5		<			<	0.5		``	0.	
o,p'-DDE	· ·	0.5		<	0.5		<	0.5		<			<	0.5		`	0.	
p.p'-DDE	<	0.5		<	0.5		<	0.5		<	0.5		<	0.5		`	0.	
o.pDDD	<	0.5		<	0.5		<	0.5		<	0.5		<	0.5		<	0.5	
p.p'-DDD -d	<	0.5		<	0.5		<	0.5		<	0.5		<	0.6		<	1.3	
p.p'-DDT	(0.6		-	0.6			0.9			3.9			0.6		100	2.0	
p-DDT		0.5 0.5		<	0.5		<	0.5		<	0.9		<	0.5		<	0.5	
lichlorobiphenyls	`	0.89		<	0.5		<	0.5		<	0.5		<	0.5		<	0.5	
richlorobiphenyls	•			<	1.1		<	8.0		<	1.2		<	1.0			2.2	
etrachlorobiphenyls		3.3			3.0			7.7			3.6		<	0.5			20	
entachlorobiphenyls		6.1 8.2			6.6			12			6.0			2.7			27	
exachlorobiphenyls					10			9.4			14			7.4			19	
eptachloroblphenyls		3.9			4.6			4.1			5.5			2.5			5.7	
ctachlorobiphenyls	<	0.96			0.7			1.6			1.7			0.7			1.0	
onachlorobiphenyls	<	0.50		<	0.5			0.9			0.6		<	0.5			0.6	
exaphene -e		0.5		<	0.5			2.3		<	0.5		<	0.5		<	0.5	
	<	50		<	70		<	100		<	120		<	80		<	120	
ecovery of 1,2,3-trichlorobena	zene	94	8		00	P			_									
covery of acenaphthene-d10	-0110	93	2		90 84	8		67	8		66	8		58	8		62	,
		90	/		04	7		85	%		88	8		92	8		80	,
mple weight, g		10.11			10.06		1	0.26			10.01							
dry weight		74.51			77.33			3.60			10.21			10.09			10.29	
					17.00		/	J.60			48.85			60.75			52.89	

a The concentrations of all compounds were calculated using acenaphthene-d10 as the internal standard.

b The "less than" symbol (<) indicates that the chemical was not detected and that the value is the detection limit.

c Duplicate analysis.

d Possible interfering peak at the same retention time.

e Detection limits greater than 50 are due to the presence of PCB's in the sample extract that interfered with the analysis for toxaphene.

Table 12. Concentrations of chlorinated compounds in sediment samples, ng/g (ppb) dry weight.

		rated Comp		T	-91	_	\ \	bioà! IIÀ	/ y '	(טעק)	ury we	igh
	/	C 47-24	6		47-225	C 7	\	47-2	28 26		47-2	C 9 42
hexachlorobenzene	•	0.5		<	0.	5		1.	 7			
lindane (gamma-BHC)	<	0.5		<	0.		<	0.9		(0.5	
heptachlor	<	0.5		<	0.9		<	0.5		<	0.9	
aldrin	<			<	0.9		`	0.5		<	0.5	
heptachlorepoxide		0.6		<	0.5		•			<	0.5	
alpha-chlordane	<				0.5			4.9		<	0.5	
trans-nonachlor		0.8		<	0.5			4.6		<	0.5	
dieldrin	<	0.5		`	0.5			3.7		<	0.5	
mirex	<	0.5		`	0.5			5.2		<	0.5	
o.p'-DDE	<	0.5		`	0.5		<	0.5		<	0.5	
p.p'-DDE	<	0.5		`			(0.6		<	0.5	
o,p'-DDD	<	1.9		`	0.5		<	0.5		<	0.5	
p.p'-DDD	•	3.2	5-1	•	2.1		<	8.0		<	0.6	
p.p'-DDT	<	0.5		88.	5.6			71		<	0.5	
D.P'-DDT	`	0.5		29	/ 42		<	0.7		<	0.5	
lichlorobiphenyls	`	19.0		μ.	~ 22	,	19 40	0.8		<	0.5	
richlorobiphenyls	•	1.2			1.7			120		<	1.6	
etrachlorobiphenyls		5.4			14			530		<	0.6	
entachlorobiphenyls		11			29			1100		<	0.6	
exachlorobiphenyls		16			41			1200			1.8	
eptachlorobiphenyls		6.7			22			690			0.9	
ctachlorobiphenyls		1.4			5.8			180		<	0.5	
onachlonobishes de		1.1			1.6			44		<	0.5	
onachlorobiphenyls oxaphene -d	<	0.5	<	(0.5			9.6		<	0.6	
oxaphene -d	<	130	(50		<	1500		<	50	
ecovery of 1,2,3-trichlorobenzen	Δ.	60	D			_						
ecovery of acenaphthene-d10	C		%		96	%		120	%		62	%
, o. aconaphalene-g10		80	%		87	%		94	%		77	%
mple weight, g		10.41			9.97			0.00				
dry weight		52.85			54.72			9.99			10.50	
					04.72			48.72		3	38.72	

a The concentrations of all compounds were calculated using acenaphthene-d10 as the internal standard.

b The "less than" symbol (<) indicates that the chemical was not detected and the value is the detection limit.

c The o,p'-DDT and p,p'-DDT were confirmed using GC/MS.

d Detection limits greater than 50 are due to the presence of PCB's in the sample extract that interfered with the analysis for toxaphene.

Table 13. Concentrations of chlorinated compounds in blank samples and Duwamish III reference sediment, ng/g (ppb) dry weight.

		c blank 47-232		c blank 47-244	spk.se 47-2			DUW III 47-230	X (N=9)	cv	
hexachlorobenzene	<	0.2	<	0.2	68	3 %		0.8	0.6	6	
lindane (gamma-BHC)	<	0.2	<.	0.2	8		<	0.5	-	-	
heptachlor aldrin	<	0.2	<	0.3	80	2	<	0.5	-	_	
	<	0.2	<	0.2	86	8	<	0.5	-	_	
heptachlorepoxide	<	0.3	<	0.3	110	8	<	0.5	_		
alpha-chlordane	(0.2	<	0.2	91	8		0.8	1.7	29	
trans-nonachlor dieldrin	<	0.2	<	0.2	94	7		0.5	1.1	18	
mirex	<	0.2	<	0.3	98	%		0.6		-	
0,p'-DDE	<	0.2	<	0.2	92	%	<	0.5	_	_	
p.p'-DDE	<	0.3	<	0.4	100	%	<	0.5	_	_	
0.p'-DDD	<	0.2	<	0.2	90	%	<	0.5	_	_	
p.p'-DDD	<	0.4	<	0.5	100	%		4.5	_	_	
	<	0.3	<	0.4	90	8		22	-	_	
o.p'-DDT	<	0.3	<	0.4	96	%	<	0.5	_		
p.p'-DDT	<	0.3	<	0.2	97	%		3.1	_	_	
dichlorobiphenyls	<	1.1	<	1.1	110	%		4.8	4.8	21	
trichlorobiphenyls		0.6	<	0.5	180	%		52	51	12	
tetrachlorobiphenyls		0.5	<	0.5	140	%		200	190	11	
pentachlorobiphenyls		3.7		1.0	80	%		370	500	16	
hexachlorobiphenyls		1.4	<	0.3	92	8		240	420	17	
heptachlorobiphenyls		0.2	<	0.2	77	2		64	140	43	
octachlorobiphenyls	<	0.2	<	0.2	87	%		16	34	56	
nonachlorobiphenyls	<	0.4	<	0.4	110	%		5.2	12	92	
toxaphene -g	<	50	<	50	-		<	300	-	92	
recovery of 1.2,3-trichlorobe	enzene	77 %		57 %	76	D.		100			
recovery of acenaphthene-d1	0	90 %		71 %	76 96	%		120 % 90 %			
sample weight, g		_		_							
% dry weight		-		-				10.15 52.2 3			

a The concentrations of all compounds were calculated using acenaphthene-d10 as the internal standard.

b The "less than" symbol (<) indicates that the chemical was not detected and the value is the detection limit.

c Blank analysis

d The percent recoveries of analyte standards added to a duplicate of C 2 were obtained after subtracting concentrations of the analytes in the sediment.

e Mean for previously analyzed Duwamish III reference sediment.

f Coefficient of variation for previously analyzed Duwamish III reference sediment.

g Detection limits greater than 50 are due to the presence of PCB's in the sample extract that interfered with the analysis for toxaphene.

Table 14. Concentrations of phthalates in sedimant samples, ng/g (ppb) dry weight.

	C 1	C 1	C 2	C 3	C 4	C 5
	47-227	47-231	47-237	47-238	47-239	47-240
dimethyl phthalate diethyl phthalate diallyl phthalate disobutyl phthalate dibutyl phthalate dibutyl phthalate dicyclohexyl phthalate bis(2-ethylhexyl) phthalate	8.5 4.5 2.6 2.8 13 9.7 280	5.0 2.7 0.66 0.67 7.3 1.5	3.1 1.7 < 0.28 0.89 7.2 1.4 120	11 4.4 1.6 3.5 36 11 1000	6.4 1.9 0.58 0.84 13 3.6 260	8.2 2.4 < 0.56 1.8 24 4.1 500
recovery of added standards: dimethyl isophthalate bis(2-ethylhexyl) isophthalate sample weight, g % dry weight	100 %	108 %	77 %	110 %	140 %	88 %
	104 %	92 %	110 %	110 %	140 %	85 %
	10.11	10.06	10.26	10.21	10.09	10.29
	74.51	77.33	73.60	48.9	60.8	52.9

a The concentrations of all compounds were calculated using bis(2-ethylhexyl) isophthalate as the internal standard, i.e. data

b The "less than" symbol indicates that the chemical was not detected and that the value is the detection limit. c Duplicate analysis.

Table 15. Concentrations of phthalates in sediment samples, ng/g (ppb) dry weight.

	C 6	C 7	C 8	C 9
	47-241	47-225	47-226	47-242
dimethyl phthalate diethyl phthalate diallyl phthalate diisobutyl phthalate dibutyl phthalate dicyclohexyl phthalate bis(2-ethylhexyl) phthalate	11	12	4.8	11
	4.7	3.6	18	15
	1.6	1.5	20	29
	1.4	1.1	6.5	3.2
	130	31	60	17
	6.1	5.7	65	8.8
	580	740	2800	100
recovery of added standards: dimethyl isophthalate bis(2-ethylhexyl) isophthalate sample weight, g % dry weight	92 %	105 %	112 %	98 %
	81 %	96 %	89 %	96 %
	10.41	9.97	9.99	10.5
	52.85	54.72	48.72	38.72

a The concentrations of all compounds were calculated using bis(2-ethylhexyl) isophthalate as the internal standard, i.e. data are corrected for recovery.

b The "less than" symbol indicates that the chemical was not detected and that the value is the detection limit.

Table 16. Concentrations of phthalates in blanks, spiked sediment and Duwamish III reference sediment, ng/g (ppb) dry weight.

		blank 47-23			blank 47-24			d ×	spk.blk 47-24		DUW 11 47-23	
dimethyl phthalate diethyl phthalate diallyl phthalate diisobutyl phthalate dibutyl phthalate dicyclohexyl phthalate bis(2-ethylhexyl) phthalate	< < < < < < < < < < < < < < < < < < <	3.1 0.22 0.61 0.15 5.2 0.11		<	3.8 2.9 0.29 4.9 8.0 1.5 35		<	3.5 1.6 0.45 2.5 6.6 0.81 34	140 130 130 120 110 120 120	% % % %	13 6.9 4.4 3.5 64 11 670	
recovery of added standards: dimethyl isophthalate bis(2-ethylhexyl) isophthalate sample weight, g % dry weight		75 82 - -	% %		69 77 ~ -	% %			95 83 -	% %		% %

a The concentrations of all compounds were calculated using bis(2-ethylhexyl) isophthalate as the internal standard, i.e. data are corrected for recovery.

b The "less than" symbol indicates that the chemical was not detected and that the value is the detection limit.

d Mean for the blank analysis (n=2).

e The percent recoveries of analyte standards added to a duplicate of C 2 were obtained after subtracting the concentrations of the analytes in the sediment.

Table 17. Concentrations of chemicals in sediment samples, ng/g (ppb) dry weight.

		C 1 47-227		C 1 47-231	c	C 2 47-237		C 3 47-238			C 47-239			C 5 47-240	
bis (2-chloroethyl) ether	<	50	<	50	<	50	<	50			50				
N-nitrosodi-n-propylamine	<	2.7	<	2.6	<	2.7	<	3.7	d	`	2.6	4	<	50	
nitrobenzene	<	2.3	<	2.2	<	2.4	<	4.8	ď	`	3.0	d	<	4.0	
bis (2-chloroethoxy) methane	<	6.7	<	6.3	<	6.7	<	9.3	d	`	6.3		<	2.6	
2.6-dinitrotoluene	<	3.0	<	2.8	<	2.6	<	5.3	u	`		d	<	10	
2.4-dinitrotoluene	<	3.0	<	2.8	<	2.6	<	5.2		`	3.3		(2.9	
azobenzene -e	<	1.6	<	1.5	<	1.6		2.2		`	3.2		<	2.9	
benzidine	<	2.7	<	2.5	<	3.4	`	6.7			1.5		<	2.4	
3.3-dichlorobenzidine	<	2.3	<	2.1	<	2.2	`	3.0		<	4.2		<	3.7	
1.3-dichlorobenzene	<	40	<	40	<	40	`		d	<	2.0		<	3.2	
1.4-dichlorobenzene	<	40	<	40	,	40		40		<	40		<	40	
1.2-dichlorobenzene	<	40	<	40	`	94	<	40		<	40		<	40	
4-chlorophenyl phenyl ether	<	50	<	50	`	50	(40		<	40		<	40	
4-bromophenyl phenyl ether -f		-		-	•	50	<	50		<	50		<	50	
sophorone	<	2.0	<	1.9	ζ.	2.0					-			~	
		2.0	•	1.5	`	2.0	<	2.7	d	<	1.9		<	3.0	
ample weight, g		10.11		10.06		10.26		10.01							
dry weight		74.51		77.33				10.21			10.09			10.29	
				77.00		73.60		48.85			60.75			52.89	

a The concentrations of these compounds were calculated using hexamethylbenzene as the internal standard, i.e. the data are not

b The "less than" symbol (<) indicates that the chemical was not detected and the value is the detection limit.

c Duplicate analysis.

d Value confirmed by GC/MS.

e Azobenzene is a decomposition product of 1,2-diphenylhydrazine and was calculated using 1,2-diphenylhydrazine standard amounts. f Samples were not analyzed for 4-bromophenyl phenyl ether.

Table 18. Concentrations of chemicals in sediment samples, ng/g (ppb) dry weight. a,b

		C 6 47-241		C 7 47-225		C (C 9 47-242	
bis (2-chloroethyl) ether	<	50	<	50		50	c	<	Ε Λ	
N-nitrosodi-n-propylamine	<	3.7	<	4.6	`	4.8	C		50	С
nitrobenzene	<	4.2	<	3.9		4.1			4.5	
bis (2-chloroethoxy) methane	<	9.3	<	11	`	12		<	2.9	
2.6-dinitrotoluene	<	4.7	<	5.1	`			<	11	
2.4-dinitrotoluene	<	4.6	<	5.0	`	5.3		<	3.2	
azobenzena -d	<	2.2	`	2.7		5.2		<	3.2	
benzidine	<	6.0	`	4.5	<	2.8		<	2.7	
3.3-dichlorobenzidine	<	3.0	`		·	4.7	С	<	4.1	
1.3-dichlorobenzene	<	40	`	3.8	·	4.0		<	3.6	
1,4-dichlorobenzene		40	`	40	<	40	C	<	40	
1,2-dichlorobenzene	`	40		40	<	40	C	<	40	
4-chlorophenyl phenyl ether	`	42	<	40	<	40	C	<	40	
4-bromophenyl phenyl ether -e	•	42	<	23	<	32		<	29	
isophorone	<	0.7		_		-			-	
	•	2.7	<	3.3	<	3.5		<	3.3	
sample weight. g		10.41		9.97		9.99			10.50	
% dry weight		52.85		54.72		48.72			10.50 38.72	

a The concentrations of these compounds were calculated using hexamethylbenzene as the internal standard, i.e. the data are not

b The "less than" symbol (<) indicates that the chemical was not detected and the value is the detection limit.

c Value confirmed by GC/MS.

d Azobenzene is a decomposition product of 1.2-diphenylhydrazine and was calculated using 1.2-diphenylhydrazine standard amounts. e Samples were not analyzed for 4-bromophenyl phenyl ether.

Table 19. Concentrations of chemicals in blank samples and Duwamish III reference sediment, ng/g (ppb) dry weight.

		c blank 47-232		c blank 47-244		DUW III 47-230	
bis (2-chloroethyl) ether	<	4.6	<	19	<	6.6	
N-nitrosodi-n-propylamine	<	2.9	<	2.9	ζ.	4.1	
nitrobenzene	<	2.5	<	1.7	ζ.	3.5	
bis (2-chloroethoxy) methane	<	7.1	<	7.2		10	
2.6-dinitrotoluene	<	3.2	<	1.9		4.5	
2.4-dinitrotoluene	<	3.1	<	1.9	<	4.4	
azobenzene -d	<	1.7	<	1.7		2.4	
benzidine	<	2.8	<	2.7		4.0	
3.3-dichlorobenzidine	<	2.4	<	2.3	į	3.4	
1.3-dichlorobenzene	<	26	<	25	`	35	
1.4-dichlorobenzene	<	22	<	22	`	30	
1.2-dichlorobenzene	<	9.3	<	6.7	`	13	
4-chlorophenyl phenyl ether	<	18		17	`		
4-bromophenyl phenyl ether -e		_	•		•	24	
isophorone	<	2.1	<	2.1		7.4	
	•	2.1	•	2.1	<	3.0	
		·					
sample weight, g		_					
% dry weight		_		-		10.15	
, was give		-		-		52.23	

a The concentrations of these compounds were calculated using hexamethylbenzene as the internal standard, i.e. the data are not corrected for recovery.

b The "less than" symbol (<) indicates that the chemical was not detected and the value is the detection limit.

c Blank analysis.

d Azobenzene is a decomposition product of 1.2-diphenylhydrazine and was calculated using 1.2-diphenylhydrazine standard amounts.

e Samples were not analyzed for 4-bromophenyl phenyl ether.

Table 20. Concentrations of chemicals in sediment samples, ng/g (ppb) dry weight.

		C 1 47-227	-	C 1 47-231	c	C 2 47-237		C 3 47-238		C 4 47-239		C 5 47-240
hexachlorobutadiene alpha endosulfan beta endosulfan endrin hexacholorocyclohexanes -d	< < <	1.3 1 1 1 0.57	< < < < < < < < < < < < < < < < < < <	0.8 1 1 1 0.63	< < <	0.8 1 1 1 0.50	< < <	1.3 1 1 1 0.76	< < <	1.3 1 1 1 0.65	< < <	1.3 1 1 1 0.67
sample weight, g % dry weight		10.11 74.51		10.06 77.33		10.26 73.60		10.21 48.85		10.09 60.75		10.29 52.89

a The concentrations of these compounds were calculated using tetrachloro-m-xylene as the internal standard, i.e. the data are

b The "less than" symbol (<) indicates that a chemical was not detected and the value is the detection limit.

d The reported detection limit is the highest detection limit of the alpha, beta, or delta isomers.

Table 21. Concentrations of chemicals in sediment samples, ng/g (ppb) dry weight.

		C 6 47-241		C 7 47-225		C 8 47-226		C 9 47-242
hexachlorobutadiene alpha endosulfan beta endosulfan endrin hexachlorocyclohexanes -c	< < < < < < < < < < < < < < < < < < <	1.3 1 1 1 0.70	< < <	1.9 1 1 1 0.94	< < <	10 1 1 1 1	< < <	1.3 1 1 1 0.91
sample weight, g % dry weight		10.41 52.85		9.97 54.72		9.99 48.72		10.50 38.72

a The concentrations of these compounds were calculated using tetrachloro-m-xylene as the internal standard, i.e. the data are not corrected for recovery.

b The "less than" symbol (<) indicates that a chemical was not detected and the value is the detection limit.

c The reported detection limit is the highest detection limit of the alpha, beta, or delta isomers.

Table 22. Concentrations of chlorinated compounds in blank samples and Duwamish III reference sediment, ng/g (ppb) dry weight.

		blank 47-232		c blank 47-244		DUW III 47-230	
hexachlorobutadiene alpha endosulfan beta endosulfan endrin hexachlorocyclohexanes -d	< < <	1.2 1 1 1 0.71	< < <	1.0 1 1 1 0.59	< < <	1.7 1 1 1 0.73	
sample weight, g % dry weight		-		· _		10.15 52.23	

a The concentrations of these compounds were calculated using tetrachloro-m-xylene as the internal standard, i.e. the data are

b The "less than" symbol (<) indicates that a chemical was not detected and the value is the detection limit.

d The reported detection limit is the highest detection limit of the alpha, beta, or delta isomers.

Table 23. Results of 10 day amphipod (Rhepoxynius abronius) bioassays of fresh and aged Duwamish Waterway and reference sediments.

Sediment	Number surviving/number ex Fresh	posed Aged
Cl	0.96 <u>+</u> 0.042	0.97 <u>+</u> 0.045
C2	0.87 <u>+</u> 0.091	0.96 <u>+</u> 0.042
C3	0.96 <u>+</u> 0.065	0.97 <u>+</u> 0.027
C4	0.84 <u>+</u> 0.090	0.95 <u>+</u> 0.035
C5	0.88 <u>+</u> 0.084	0.90 <u>+</u> 0.079
C6	0.66 <u>+</u> 0.152a,b	0.85 <u>+</u> 0.123
C7	0.70 <u>+</u> 0.062a,b	0.94 <u>+</u> 0.065
C8	0.39 <u>+</u> 0.096a,b	0.95 <u>+</u> 0.035
Sequim Bay	0.85 <u>+</u> 0.050a	0.93 <u>+</u> 0.029
Bowman Bay	0.96 <u>+</u> 0.042	0.94 <u>+</u> 0.055
Fresh Sequim Bay ^C		0.93 <u>+</u> 0.029
Fresh Bowman Bay ^C		0.98 <u>+</u> 0.027

a Significantly different from Bowman Bay; P=0.05.

b Significantly different from Sequim Bay; P=0.05.

^C Fresh sediment bioassay controls.

Table 24. Toxicity of organic extracts of fresh and aged Duwamish Waterway and reference sediments determined by the bacterial bioluminescence assay. Results are expressed as estimates of the 15-min EC $_{50}$ s and their 95% confidence intervals.

	Toxic: (15 min-EC ₅₀ and 9	
Sediment	Fresh	Aged
C1	0.41(0.38 - 0.44)	0.53(0.51 - 0.55)
C2	0.43(0.39 - 0.47) 0.40(0.34 - 0.45)	0.61(0.53 - 0.69)
C3	0.06(0.05 - 0.06)	0.06(0.05 - 0.06)
C4 °	0.45(0.40 - 0.50) 0.42(0.37 - 0.48)	0.24(0.21 - 0.26)
C5	0.15(0.13 - 0.17)	0.07(0.07 - 0.08)
C6	0.18(0.17 - 0.20)	0.07(0.07 - 0.08)
C7	0.08(0.08 - 0.09)	0.08(0.08 - 0.09)
C8	0.06(0.04 - 0.07)	0.04(0.04 - 0.05)
Bowman Bay, West Beach	3.29(2.97 - 3.61)	7.85(6.92 - 8.77)

Table 25. Comparison of chemical data to Four Mile Rock criteria.

	column 4 of Four Mile Rock				compo	site samp	le number	91		
	criteria	C 1 -a	C 2	C3	C 4	C 5	C 6	C 7	C 8	C 9
etals, ppm							1.5	*		
arsenio	17	8.7	12	17	14	18	17	20	34	22
cadmium	0.75	0.13	0.15	0.45	0.26	0.42	0.35	0.39	3.1	22
copper	100	15	16	32	22	32	32	35		0.64
lead	140	8.6	8.9	20	14	17	17	24	120	35
mercury	1.2	0.01	0.01	0.04	0.02	0.04	0.07		160	12
zinc	400	57	57	91	71	84	79	0.05	0.42 270	< .03 93
janics, ppb										
high molecul aromatic hyd	12,000	110	220	1,200	440	820	700	1,300	5,400	140
								4		
low molecula aromatic hyd	750	47	140	180	92	150	120	260	3,500	43
PCB's	670	23	38	31	13	76	T - 2/1 3/1/ 199	120	3,900	2.7
DDT -d	8	0.6	0.9	3.9	0.6	2.6	3.2	(Ž9)	72	< 0.5

a These are the mean concentrations for metals for duplicate analysis.

c Summation of the concentrations of acenaphthene, naphthalene, acenaphthylene, anthracene, phenanthrene, and fluorene.

d Summation of the concentrations of 4,4'-DDD, 4,4'-DDE and 4,4'-DDT.

b Summation of the concentrations of dibenzo[a,h]anthracene, benz[a]anthracene, benzo[a]pyrene, benzofluoranthenes, chrysene, fluoranthene, indeno[1,2,3-cd]pyrene, pyrene, and benzo[ghi]perylene.

APPENDIX I

Chemical Tests on Sediment

NAF conducted physical and chemical tests on 9 sediment samples.

Detection Limits:

Pesticides: 1 ng/g (ppb) dry wt for individual

compounds, 20 ppb for PCBs and

50 ppb for toxaphene

Heavy metals: As, Cd, Cu, Pb, Hg, Zn

Hg

0.1 ug/g (ppm) dry wt

0.01 ug/g

Aromatic hydrocarbons:

20 ng/g (ppb) dry wt or lower

Blanks:

equivalent of $\leq 5 \text{ ng/g}$

Reference materials:

NAF Duwamish III sediment

Analytical Procedures:

Pesticides, Organics:

NOAA Tech Memo NMFS F/NWC-64, with only

minor changes

Heavy metals:

Acid digestion and atomic absorption

analysis

Quality Assurance

NAF analyzed 1 composite sediment sample in duplicate. The recovery of internal standards added to each sample at the beginning of the extraction procedure are reported. The following QA parameters and laboratory blanks with added standards shall be observed:

Accuracy

the recovery of standards added to lab blanks

were recovered at > +50%.

Precision

coefficients of variation generally were

considerably < + 25%.

Reference Materials

Duwamish III sediment for organics, NBS SRM or

equivalent for metals (1 analysis for every set

of 20 or fewer samples)

Blanks

2 samples

Sample with Added Standards or Reference Material

1 reference sample was analyzed and standards were added to composited sediment C2 and percent recovery determined.

Replicates

C1 was analyzed in duplicate

Internal standards and blanks

results are included in tables

Instrument calibration and performance data

Tables I a-d in Appendix

Verification of reference materials, standards, and solvents/reagents

solvents and reagents were tested prior to use to show that they were not contaminated. Standards and reference materials have been analyzed in replicate for verification.

 $\label{tau} \textbf{Table Ia} \quad \textbf{Calibration standard comparison for gas chromatograph reproducibility}.$

		47-225 - 4	7-232 SA2L	2		47-225 - 4	7-232 SA1B		
Sample #	47-233	47-234 A	47-234 B	47-234 C	47-234	47-233 A	47-233 B	47-233 C	47-233 D
naphthalene 2-methy Inaphthalene 1-methy Inaphthalene bipheny 1 2,6-dimethy Inaphthalene acenaphthene fluorene phenanthrene anthracene 1-methy Iphenanthrene fluoranthene	98 98 98 98 98 100 99 99	100 100 100 100 100 100 100 100 100	98 100 100 100 100 99 100 101 101	99 100 100 99 100 99 100 101 100 101	100 102 101 102 101 100 102 103 103 105	100 104 102 101 100 96 100 100 100	100 100 100 100 100 100 100 100 100	99 100 100 100 100 99 101 101 101	100 100 100 100 100 100 101 101 102 102
pyrene benz[a]anthracene chrysene benzo[e]pyrene benzo[a]pyrene perylene dibenz[a,h]anthracene	100 100 101 • 99 100 105 83	100 100 100 100 100 100	101 102 102 100 101 99 102	101 102 102 101 101 99 104	105 106 105 102 103 98 123	100 99 101 100 99 98 96 95	100 100 100 100 100 100 100	100 100 102 101 102 101 100	104 103 104 104 100 101 101
naphthalene-d8 acenaphthene-d10 pery lene-d12	101 101 102	100 100 100	101 101 100	100 100 101	100 100 103	104 104 100	100 100 100	99 100 102	99 100 102

a Calibration standard comparisons are calculated by setting the results of one calibration = to 100% and calculating the other runs

 $\textbf{Table Ib.} \quad \textbf{Calibration standard comparison for gas chromatograph reproducibility.}$

	*********	47-237 - 4	7-244 SA2-	L2		47-237 - 4	7-244 SA1B	
Sample #	47-245 A	47-246 A2	47-246 B	47-246 C	47-245 D	47-245 A	47-245 B	47-245 F
naphthalen e	109	91	100	100	101	99	100	400
2-methylnaphthalene	108	99	100	100	99	98	100	100
1-methy inaphthalene	107	93	100	100	. 99	98	100	100
bipheny 1	107	99	100	99	99	99	100	100
2,6-dimethy Inaphthalene	107	100	100	99	100	99	100	100
acenaphthene	108	101	100	99	101		100	100
Nuorene	107	100	100	99	100	100	100	98
phenanthrene	105	101	100	99	99	100	100	100
anthracene	105	101	100	99		102	100	99
1-methylphenanthrene	104	102	100	93	99	102	100	99
Nuoranthene	103	103	100	98	99	103	100	99
pyrene	103	103	100	98	99	104	100	98
benz[a]anthracene	104	107	100	99	99	104	100	99
chrysene	104	107	100		99	104	100	97
benzo[e]pyrene	. 105	110	100	100	100	105	100	97
benzo[a]pyrene	106	109	100	101	101	106	100	96
perylene	106	111	100	102	102	107	100	97
dibenz[a,h]anthracene	108	113		103	102	107	100	95
	100	113	100	107	101	109	100	94
naphthalene-d9	107	87	100	99	96	06	100	100
acenaphthene-d10	103	100	100	100	99	96	100	100
perylene-d12	105	104	100	102		98	100	101
			100	102	102	106	100	98

a Calibration standard comparisons are calculated by setting the results of one calibration = to 100% and calculating the other runs in terms of that one calibration.

Table ${}^{\rm I\, C}$ Calibration standard comparison for gas chromatograph reproducibility.

47-225 - 47-232 SA2L2 47-225 - 47-232 SA1B Sample # 47-233 A 47-234 A 47-234 B 47-234 C 47-234 47-233 A 47-233 C hexachlorobenzene lindane (gamma-BHC) heptachlor aldrin heptachlorepoxide alpha-chlordane trans-nonachlor dieldrin mirex O.P'-DDE P.P'-DDE o,p'-DDD P.P'-DDD o,p'-DDT P.P'-DDT dichlorobiphenuls trichlorobiphenuls tetrachlorobipheny ls pentachlorobipheny ls hexachlorobiphenyls heptachlorobipheny ls octachlorobipheny ls nonachlorobiphenyls 1,2,3-trichlorobenzene

a Calibration standard comparisons are calculated by setting the results of one calibration = to 100% and calculating the other runs in terms of that one calibration.

Table Id Calibration standard comparison for gas chromatograph reproducibility.

	47-2	37 - 47-24	SA2L2		47-2	37 - 47-24	4 SAIB
Sample *	47-245 A	47-246 A	47-246 B		47-245 B	47-245 C	47-245 D
hexachlorobenzene	107	100	100		100	99	73
lindane (gamma-BHC)	107	101	100		100	101	72
heptachlor	107	101	100		100	101	75
aldrin	107	100	100		100	100	75
heptachlorepoxide	107	99	100		100	99	74
alpha-chlordane	107	99	100	•	100	101	76
trans-nonachlor	107	100	100		100	102	77
dieldrin	107	99	100		100	100	76
mirex	98	86	100		100	97	73
o,p'-DDE	107	99	100		100	97	73
p,p'-DDE	106	98	100		100	97	75
'o,p'-DDD	106	99	100		100	100	76
p,p'-DDD	109	96	100		100	103	78
o,p'-DDT	102	102	100		100	101	75
p,p'-DDT	105	97	100		100	104	78
dichlorobiphenyls	106	100	100		100	98	73
trichlorobiphenyls	107	100	100		. 100	98	
tetrachlorobipheny ls	107	100	100		100	97	73
pentachlorobiphenyls	106	99	100		100	98	73
hexachlorobipheny ls	105	97	100		100		73
heptachlorobiphenyls	106	98	100		100	98	75
octachlorobipheny ls	102	98	100		100	99	75
nonachlorobipheny ls	103	98	100		100	100 100	77 83
1,2,3-trichlorobenzene	110	100	100		100	93	72

a Calibration standard comparisons are calculated by setting the results of one calibration = to 100% and calculating the other runs in terms of that one calibration.

APPENDIX II

Quality assurance data showing that methods to be used are adequate for the analyses to be performed.

- Tables 1 and 2 include the data for laboratory blanks (LB) and LB with added standards (LBAS) for the chemicals routinely analyzed by NAF.
- Table 3 shows the concentrations of aromatic hydrocarbons in our Duwamish III reference sediment for triplicate analyses by three chemists in our lab.
- Table 4 is the same as Table 3 with 3 data points omitted, one for naphthalene and two for anthracene.

1

Table 5 shows the concentrations of PCBs and pesticides in our Duwamish III reference sediment.

Appendix II Table 1.
Concentrations of aromatic hydrocarbons in blank samples and % recoveries of spiked blanks.

		chem. 1		blanks chem. 2		chem. 3	chen. 1	sp. blanks chen. 2	chen. 3
*****		50-404		50-413		50-424	50-403	50-414	50-423
naphthalene 2-methyl naphthalene 1-methyl naphthalene biphenyl 2,6-dimethyl naphthalene acenaphthene fluorene phenanthrene anthracene 1-methyl phenanthrene fluoranthene pyrene benz[a]anthracene chrysene benzo[e]pyrene benzo[a]pyrene perylene dibenz[a,h]anthracene	*************	6. D 6. S 6. 3	2	5. 6 5. 5 6. 0 5. 9 6. 1	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	7.5 7.8 7.6 7.5 7.4 7.8 6.8 6.0 5.8 5.5 5.4 5.3 5.6 6.1 5.8 5.9 5.9	100% 100% 100% 100% 100% 100% 110% 110%	1008 1108 1008 1008 1008 1008 1108 1108	998 1003 1003 998 1003 1003 1003 1003 1003 1003 1003 100
recovery of naphthalene-dB recovery of acenaphthene-d1D recovery of perylene-d12		63% 80% 79%		91% 92% 92%		92% 90% 85%	90% 91% 90%	. 728 758 778	99% 100%

Appendix II - Table 2.

Concentrations of chlorinated hydrocarbons in blank samples and % recoveries of spiked blanks.

				blanks				sp. blanks	
*		chem. 1		chem. 2		chem. 3		chen. 2	
		50-404	1	50-413		50-424	50-403	50-414	50-423
hexachlorobenzene	<	. 62	· (. 45		. 47	 5:1%	1403	59%
lindane (gamma-BHC)	<	. 95	(. 67			110%	130%	100%
heptachlor	<	1.7	<	1.4			84%	96%	77%
aldrin	<	. 90	(. 63	(100%	140%	100%
heptachlorepoxide	<	1.4	<	1.0	(1.0	100%	160%	
alpha-chlordane	<	. 85	(. 62	Ċ	. 63	110%	140%	98% 110%
trans-nonachlor	<	. 90	<	.64	<	.67	100%	1403	100%
dieldrin	<	1.8	(1.3	Ċ	1.4	100%	1201	
nirex	<	1.3	(. 92		. 95	100%	1503	938
o,p'-DDE	<	1.3	(. 95	~	. 94	1108	140%	1008
p,p'-DDE	<	. 76	(.52	<	. 56	100%	15 000 000	100%
o,p'-[0D	<	2.4	(1.8	3	1.9	889	1408	100%
p,p'-000	<	2.2	(1.8	`	1.8		1403	978
o,p'-100T	<	2.4	(1.7	`	1.7	96%	140%	938
p,p'-00T	<	1.7	`	1.3	`	1. 7	110%	1513	100%
dichlorobiphenyls	ζ.	2.9	`	2.1	3	2.2	110%	150%	110%
trichlorobiphenyls	<	1.4	`	1.1	ì	1.1	100%	140%	100%
tetrachlorobiphenyls	ζ.	1.4	ì	1.0	Ċ		110%	150%	1003
pentachlorobiphenyls	<	1.3	`	1.0	`	1. 1 1. 0	110%	170%	998
hexachlorobiphenyls	<	1.2	ì	. 86			110%	150%	100%
heptachlorobiphenyls	`	. 86	`	. 62	<	. 90	110%	1503	1003
octachlorobiphenyls	`	. 80	`		<	. 62	100%	150%	100%
nonactilorobiphenyls	`	1.2	<	. 57	<	. 60	928	1603	95%
2,3,6 trichlorotoluene	`	14	'	. 87	<	. 83	76%	150%	79%
-,-,		14		20		9. 1	71%	1403	948
recovery of acenaphthene-d10		80%		92%		90%	918	75%	100%

a The concentrations and recoveries of compounds are calculated using % recovery of acenaphthene-d10.

Appendix II Table 3.
Concentrations of aromatic hydrocarbons in Duwamish III sediment samples, ng/g dry weight.

		chemist	1		chemist	2		chemist	3			
	50-399	50-400	50-401	50-409	50-410	50-411	50-419	50-420	50-421	\overline{x}	s	cv
naphthalene	230	330	880	310	310	300	280	320	200	200	400	
2-methyl naphthalene	150	140	230	160	190	150	130		320	360	200	56
1-methyl naphthalene	120	100	210	100	100	110	96	150	199	170	30	18
bipheny1	34	35	59	40	46	38		99	110	120	40	33
2,6-dinethyl naphthalene	69	61	90	76	85	74	33	39	41	41	8	19
acenaphthene	320	330	470	360	350	330	64	71	8:3	75	11	14
fluorene	310	310	450	350	590	320	360	320	390	350	50	14
phenanthrene	2400	2300	2600	2500	3000		310	320	350	370	90	24
anthræene	520	510	580	620		2300	2200	2100	2200	2400	300	12
1-methyl phenanthrene	240	220	240	220	2200	540	460	530	1300	810	580	12
fluoranthene	3800	3600	3900		270	220	190	190	200	220	30	14
pyrene	4200	3900		3700	4000	3600	3200	3100	3100	3600	300	8
benz[a]anthracene	1600	1600	4100	4000	4500	3700	3 500	3 300	35(1)	3900	490	10
chrysene	2500	2600	1800	2000	2490	2000	1700	1700	1500	1900	300	17
benzo[e]pyrene	1700		3000	3200	4200	3100	2800	2 800	2500	3000	500	17
benzo[a]pyrene	1900	1800	1800	2000	25D0	1900	1800	1500	1600	1900	300	16
perylene		1900	2000	2100	2600	2000	2000	1700	1800	2000	300	15
dibenz[a,h]anthracene	580	550	610	700	900	740	570	550	550	640	120	19
discrized, injuriant acene	340	300	330	340	510	330	310	280	290	340	70	21
recovery of naphthalene-d8	70%	718	78%	81%	78%	78%	008	0.20	000		140	
recovery of acenaphthene-d10	958	8-1%	948	93%	č() §	90%	90%	838	803	80	7	9
recovery of perylene-d12	87%	68%	718	64%	628	(5)	100%	918	100%	93	5	5
		000	110	048	028	62%	748	698	65%	71	9	13
sample weight, g	10. 15	10. 13	10. 17	10. 16	10.28	10. 26	10. 38	10.27	10 10			
% dry weight	53. 41	53.87	53. 29	52. 49	52.48	52. 32	54. 43	63.26	10. 18 56. 47			

Appendix II - Table 4.
Concentrations of aromatic hydrocarbons in Duwamish III sediment samples, ng/g dry weight.

		chemist	1		chemist	2 .		chemist	3			
	50-399	50-400	50-401	50-409	50-410	50-411	50-419	50-420	50-421	x	s	CV
naphthalene 2-methyl naphthalene 1-nethyl naphthalene bipheryl 2,6-dimethyl naphthalene acenaphthene fluorene phenanthrene anthracene 1-methyl phenanthrene fluoranthene pyrene benz[a]anthracene chrysene benzo[e]pyrene benzo[a]pyrene perylene dibenz[a, h]anthracene	230 150 120 34 69 320 310 2460 520 240 3800 4200 1600 2600 1700 1900 560 340	330 140 100 36 61 330 310 2300 510 220 3600 3900 1600 2600 1800 1900 550 300	230 210 59 90 470 400 2600 590 240 3900 4100 1800 3000 1800 2000 610 330	310 160 100 40 76 360 350 2500 620 220 3700 4000 2000 2000 2100 700 340	310 190 100 45 85 350 590 3000 - 270 4000 4500 2400 4200 2500 2600 900 510	300 150 110 38 74 330 320 2300 540 220 3600 3709 2000 3109 1900 2000 749 330	280 130 95 33 64 360 310 2200 460 190 3200 3500 1700 2800 1800 2000 570 310	320 150 99 39 71 320 320 2100 530 190 3100 3200 1700 2300 1600 1700 550 290	320 190 110 41 6) 330 360 2200 	300 170 120 41 75 350 370 2490 540 220 3600 1800 1900 2000 640 340	30 30 40 8 11 50 90 300 50 300 400 300 500 300 300	10 18 33 20 15 14 24 12 9 14 8 10 17 17 16 15
recovery of naphthalene-d0 recovery of acenaphthene-d10 recovery of perylene-d12 sample weight, g dry weight	70% 95% 87% 10. 15 53. 41	71% 84% 68% 10. 13 53. 87	78% 94% 71% 10. 17 53. 29	818 938 643 10.16 52.49	78% 90% 62% 10. 28 52. 49	76% 90% 62% 10. 26 52. 32	90% 100% 74% 10. 38 54. 43	83% 91% 63% 10.27 63.25	898 1603 658 10. 18 56. 47	80 93 71	70 7 5 9	21 9 5 13

Appendix II - Table 5.
Concentrations of chlorinated hydrocarbons in Dunamish III sediment samples, ng/g dry weight.

			(chemist	1					chenist	2				cı	hemist	3					•
*******************		50-399		50-400		50-401		50-409		50-410		50-411		50-419								
hexachlorobenzene lindane (ganma-EHC)	,		<	.51		. 56		. 67		. 65		. 60				50-420		50-421		×	S	CV
heptachlor aldrin	<	1.7	<	. 90 1. 7	(. 73 1. 3	<	. 75	<	. 83	<	. 84	<	. 39 . 72	<	. 35	〈	. 45 . 82		. 62	.04	
heptachlorepoxide	<	. 81 1. 3	<	. 80 1. 3	(. 65	<	. 71		1. 8 . 79		1. 8 . 80	<	1.5	< <	1.3	<	1.6		-	-	-
alpha-chlordane trans-nonachlor		1.9	`	1.6	(1. 0 1. 5	<	1. 1 1. 6	<	1.3 2.9	<	1. 3 1. 6	<	1.0	<	. 89		1.1		-	-	-
dieldrin Mirex	<	1. 0 1. 6	<	1. 2 1. 6	(1.3 1.3	<	1.3 1.5	(1.0		1.2		1.5 1.2		1. 3 . 85		1. 4 1. 1		1. 7 1. 1	. 5 . 2	29
o,p'-DGE	<	1.1	<	1.1	<	. 86	<		<	1. 6 1. 1	<	1.6 1.2	〈	1. 4 . 85	< .	1. 2 . 75		1.6	·	-		18
p.p'-DOE o,p'-DOD															`	. 13		. 96		-	-	-
0.p'-00D																						
p.p'-001																						
dichlorobiphenyls trichlorobiphenyls		4.8		4.8		4.0		5.3		6.7		4.5		4.5								
tetrachlorobiphenyls pentachlorobiphenyls		53 200		55 190		52 180		55 190		47 230		58		4. 5 49		3. O 37		5. ō 49	4.		1. D 6	21 12
hexachlorobiphenyls		5 50 4 60		490 410		440 350		490		670		200 520		190 500		170 430		170 430	19	0	20	11
heptachlorobiphenyls octachlorobiphenyls		130 20		130		110		400 120		580 300		420 130		430 130		370		360	501 421	0	80 70	16 17
nonachlorobiphenyls		10		32 6. 3		30 14		29 5.3		84 40		27 7. 4		28		120 31		130 24	140		60 19	43 56
recovery of aceriaphthene-d10		95%		843		948		93%						6.0		14		6. 6	12	2	11	92
sample weight, g	1	0. 15	1	0. 13						90%		ċΩ₽		100%		918		100%	93	3	5	5
% dry weight		3. 41		3. 87		0. 17 3. 29		10. 16 52. 49		10. 28 52. 48		10. 26 52. 32		0. 38 4. 43		. 27		O. 18				
a The concentrations of compound	nde i	ioro col				_							_	7. 43	03	. 26	5	6. 47				

a The concentrations of compounds were calculated using % recovery of acenaphthene-d10.

Appendix IV. Selected physical properties of aged test sediments and their interstitial water measured at the start and completion of 10-day amphipod bioassays.

	1	Нс	Sal	inity	Mean E	h (mv)
Sediment	Day O	Day 10	Day 0	Day 10	Day O	Day 10
C1	6.7	6.6	28.5	28.5	+133	+151
C2	6.7	6.6	28.5	29.7	+ 69	+172
C3	7.5	6.4	28.5	29.5	+ 62	+ 87
C4	7.0	6.5	28.5	29.7	+142	+117
C5	6.8	6.5	29.0	29.5	+ 54	+ 78
C6	7.2	6.5	28.5	29.5	- 16	+ 60
C7	6.5	6.1	28.5	28.5	+ 15	+ 74
C8	7.2	7.0	29.0	29.5	+ 5	+ 58
Aged Sequim Bay	7.2	7.1	29.0	29.5	+125	+ 36
Aged Bowman Bay	7.2	6.3	29.0	28.5	+170	+127
resh Sequim Bay	7.4	7.1	31.0	28.5	+ 87	+112
resh Bowman Bay	7.6	7.3	30.5	29.7	+ 69	+ 44

Appendix III. Selected physical properties of fresh test sediments and their interstitial water measured at the start and completion of 10-day amphipod bioassays.

Callana	pl	<u>+</u>	Sali	nity	Mean E	h (mv)
Sediment	Day O	Day 10	Day 0	Day 10	Day O	Day 10
Cl	7.4	7.9	26.9	28.0	+105	+128
C2	7.2	7.4	26.4	27.0	+ 76	+150
C3	7.0	7.3	26.5	27.0	+ 47	+ 30
C4	6.9	7.6	26.3	27.0	+ 41	+ 32
C5	7.0	7.4	26.1	27.0	+ 51	- 15
C6	6.9	7.1	27.8	27.0	+ 48	+ 25
C7	7.1	7.3	28.0	27.0	+ 51	- 23
C8	7.4	7.8	30.2	27.5	+ 19	- 9
Sequim Bay	7.6	7.7	31.0	28.0	+126	- 39
Bowman Bay	7.0	7.3	28.7	27.0	+360	+ 79

TERMINAL 30 EXPANSION
SEDIMENT CHEMISTRY ANALYSIS

this T-30 material constitutes.

the questest portion of contaminated

Fill in the T-91 short Fill

PORT OF SEATTLE

MEMORANDUM

DATE December 19, 1984

TO John Dohrmann, Senior Environmental Planner

FROM Doug Hotchkiss, Consultant

SUBJECT Arithmetic Mean Values of T-32 Sediment Compared to 4-Mile Rock, Deep Central Basin and Pre-1900 Values

_	Contami	nant	Fail	ing	diments 4-Mile iteria	4-Mile Criter (125%)	ia	Passi	Sediments ng 4-Mile Criteria		ntral	Pre_	1900
	As Cd Cu Pb Hg Zn	ppm ppm ppm ppm	17.4 5.0 119.0 188.1 1.0 435.9	+ + + +			9	3.7 0.68 17.6 11.3 0.05 39.1	$\frac{-}{+}$ 7.2 $\frac{-}{+}$ 15.5	10 .32 36 38 0.14 99		6 .3 25 6 0.0	
_	PcB's	ppb	2763	<u>+</u>	2498	760		5.9	<u>+</u> 24	125		13	-
	DDT's	ppb	72	+	74	9			N.D.	1.5		.2	4
-	High PAH's	ppb	8485	<u>+</u>	7206	14,000		292	<u>+</u> 547	2,200		340	
	Low PAH's	ppb	3778	<u>+</u>	3620	855		236	<u>+</u> 202	- 160		170	

5166p

Dong Statte

JOHN L. FOX MARCH 18, 1983
WN BY
JOHN L. FOX
ROVER BY

TERMINAL 30

Pier 28 Sediment Boring Stations

PORT OF SEATTLE

CONSULTANT'S NO

BORING :	SAMPLE	DEPTH RANGE(ft)	LAB #	AMPH BIOA		HEAVY METALS	PC8s	DDTs	LOW PAHs	HIGH PAHs	OTHER DATA
				::::	/std dev	*********	*********				(O&G=oil & grease)
HC-6	Α	1-4	S-1	F	8.6/2.9	F (6)	F (6610)	F (170)	P (nd)	P (nd)	0&G 1.8% Abnorm Oyster 48.9%
(autoff)	8	4-10	S-2/3	F	12.2/2.9	F (1)	F (2810)	F (95)	F (3800)	P (nd)	0&G 1.0%
(cutoff)	С.	11.5-16.5	J		17.4/1.5	р	P (nd)	P (nd)	P (315)	P (203)	Abnorm Oyster 31.0% . O&G 0.04%
	D	16.5-22	K	р	17.6/1.5	ρ	P (nd)	P (nd)	P (243)	P (254)	0&G 0.03%
HC-7	Α	0-4.5	S-1	F	3.4/1.5	F (6)	F (2500)	F (81)	F (3230)	F (28800)	0&G 1.8%
	8	4.5-8.5	S-2	F	0.2/0.4	F (6)	P (140)	P (nd)	F (2060)	P (11030)	Abnorm Oyster 72.0% O&G 2.0% Abnorm Oyster 60.0%
	В'	8-11	S-3 .	F	0/ 0					2	NO CHEM SAMPLED
	С	11-14	S-3/4	F	12.8/3.0	F (4)	P (150)	P (nd)	F (3630)	F (17160)	Abnorm Oyster 62.5% O&G 0.98%
(h-(f)	D D	16-20	L .		*						ARCHIVE
(cutoff)	Ε	21-27	M.	р	18.0/1.2	Р	P (nd)	P (nd)	P (586)	P (27)	0&G 0.05%
	F	28-33	N	P	17.0/2.0	F (1)	P (nd)	P (nd)	P (214)	P (67)	0&G 0.01%
HC-8	A	0-3.5	S-1	F	8.6/1.2	F (1)	F (1200)	P (nd)	F (6380)	P (10570)	0&G 0.47%
	8	4.5-6.5	S-2	F	7.6/2.5	F (4)	F (3740)	F (80)	P (nd)	P (nd)	Abnorm Oyster 53.7% 0&G 0.90%
	8'	8.5-12.5	S-3		13.2/3.0	. (4)	(3/40)	(00)	r (IIII)	r (III)	Abnorm Oyster 27.6% NO CHEM TEST
(cutoff)		12.5-14.5	S-4			,		• • • •			Abnorm Oyster 19.2% . ARCHIVE
	D	16-19	S-4/5	. ρ	18.4/1.5						
HC-9	Α	0-3	S-1/2	F	13.4/2.2	F (3)	P (420)	F (47)			0&G 0.67% -
(cutoff)	8	3-8	S-2/3/4	 Р	17.8/1.0	р Р	P (nd)	P (nd)	P (440)	P. (1670)	Abnorm Oyster 22.9% . 0&G 0.25%
	С	10-15	0	n	15.4/3.2	р	P (nd)	P (nd)	P (359)	P (85)	Abnorm Oyster 18.4% O&G 0.09%
	-	10-13	U	г	13.4/3.2	r	r (IIU)	r (IIu)	F (337)	F (65)	044 0.074
	D	15-20	Р	P	16.0/1.9	р	P (nd)	P (nd)	P (nd)	P (57)	0&G 0.05%
HC-10	Α	0-3.5	S-1	F	10.6/1.7	CHEM	COMPOSITE	D SEE	HC-9-A		Abana Onton 10 74
	В	3.5-7.5	S-2	F	9.6/1.7	F (1)	F (3100)	F (105)	F (6350)	P (9200)	Abnorm Oyster 19.3% O&G 0.5%
	8'	8.5-11	S-3	0 -	17.6/1.8	р	F (1000)	P (nd)	P (440)	P (nd)	Abnorm Oyster 22.0% 0&G 0.17%
(cutoff)						. 					Abnorm Oyster 26.4% .
	С	13.5-16	S-4	Р	16.4/3.4	Р	P (nd)	P (nd)	P (nd)	P (nd)	0&G 0.02%
	D	16.5-20.5	F	Р	14.0/2.2	F (1)	P (nd)	P (nd)	P (nd)	P (205)	0&G 0.01%

	Ε	20.5-25	G				COMPOSITE	D SEE	HC-10-D		
HC-11	A	0-3	S-1	F	10.4/3.4	CHEM	COMPOSITE	D SEE	HC-9-A		
	8	5-12	S-2/3	F	12.0/4.3						Abnorm Oyster 41.69 NO CHEM TEST
HC-12	А	0-3.5	S-1	F	11.2/3.0	F (6)	F (5200)	F (160)			
(cutoff)	В	5.5-9	S-2	р	18.2/0.4	р	P (100)	P (nd)		P (nd)	
	C		S	Р	18.0/2.9	Р	P (nd)	P (nd)	P (nd)	P (nd)	Abnorm Oyster 23.69 O&G 0.11%
	D		T	c	13.0/2.9		0 (nd)	0 (24)	D (205)	0 (-4)	000 (-4)
	E		U		13.0/2.9	r .	P (nd)	P (nd)	P (205)	P (na)	0&G (nd) · _
HC-13	Α	0-6.5	S-1/2	F	10.4/4.0	F (1)	P (140)	P (4)	F (2080)	P (10620)	
(cutoff)	8	6.5-9	S-2/3	Р	17.8/1.3	F(3)	P (120)	P(nd)	F(2680)		Abnorm Oyster 39.6% O&G 0.88%
(cutoff)	C	10.5-15	S-1/2/4	р	16.8/2.6	Р	P (nd)	P (nd)	P (350)		Abnorm Oyster 37.3% O&G 0.07%
	D	16-20	Н	p	17.6/1.7	р	P (nd)	P (nd)	P (598)	P (232)	Abnorm Oyster 13.4% O&G 0.29%
	Ε	21.5-25	I	р	16.8/1.6	Р	P (nd)	P (nd)	P (401)	P (87)	0&G 0.08%
HC-14	A	0-4.5	S-1/2	F	12.4/2.9	CHEM	COMPOSITE	D SEE	HC-13-A		Abnorm Oyster 25.5%
	В	5-9	S-3/4	F	5.4/4.3	F (1)	P (200)	F (20)	P (nd)		0&G 0.21% Abnorm Oyster 25.0%
**************************************	****	******	*******	****	*******	******	*****	******	******	******	***********
28-A	٧	0-7									ARCHIVE -
	W	7-12		F	14.6/0.9	р	P (nd)	P (nd)	P (232)	P- (1158)	0&G 0.05%
28-8	А	0-6	***********	F	2.4/1.1	F (1)	P (128)	F (70)	F (5760)	P (4120)	0&G 3.5%
	8	6-10		F	12.4/3.4	р -	P (nd)	P (nd)	P (110)	P (nd)	0&G 0.03%
	С	10-15		F	13.0/4.1	Р	P (nd)	P (nd)	P (nd)	P (nd)	0&G (nd)
	Đ	15-20		F	12.0/1.6	р	P (nd)	P (nd)	P (nd)	P (205)	0&G (nd)
28-C	D	0-6		COMP	ŌSITED SEE 2	28-B-A					*************

SEDIMENT ANALYSIS T-30 EXPANSION RAW DATA REPORT CONTENTS AND SUMMARY

I. Laucks First Series Data Only

(Station)	(Depth)	Lab Data	Lab	4-Mile	Disposal
Boring	Sample Sample	Identification	Number	Criteria	Required
12	A	7	7	Fail	Contained
6	A	15	15	**	**
6	В	16	16	11	"
8	A	22	22	11	"
8	В	23	23	11	"
10	В	28	28	11	
10	В	29	29	**	"
12	В	36	36	Pass	Open
14	В	42	42	Fail	Contained

II. Laucks Second Series Data Only

Boring	Sample	Identification	Number	Criteria	Disposal
13	C	Ą	37 & 38	Pass	Open
13	В	В	11 & 12	- Fail	Contained
10	C	C	30	Pass	Open
9	В	5	33 & 34	Pass	Open
7	В	8	19	Fai1	Contained
. 7	C	. 9	20	Fail	Contained

III. AMTest Data (QA/QC Included)

Boring	Sample	Identification	Number	Criteria	Disposal
*B & C	A	A & D	81286	Fai1	Contained
* B	В	В	" 87	11	11
* B	C	C	" 88	11	11
* B	D	E	" 89	**	
10	D & E	F & G	" 90	Pass	Open
13	. D	H	" 91	. "	, "
13	E	I	" 92	***	•
6	C	J	" 93	" "1	11
6	D	Κ.	" 94	: tt	**
. 7	E	M	'' 95	"	11
. 7	E	M .	" 96		11
7	F	N	" 97	" -	2 11
9	C	0	'' 98	. 11	11
9	D	P	" 99.	**	**
12	- C	S	81300 -	**	**
12	D & E	T & U	" 01	**	11
* A	В	W	" 02	Fai1	Contained

- IV. Laucks First Series QA/QC
- V. Laucks Second Series QA/QC

FIRST SERIES DATA ONLY

Chemistry Microbiology, and Technical Services

Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206) 767-5060

Certificate

Chemistry Microbiology, and Technical Services

CLIENT

Port of Seattle P.O. Box 1209 Seattle, WA 98111 ATTN: Doug Hotchkiss LABORATORY NO.

85194

DATE

Aug. 6, 1984

REPORT ON

SOIL

SAMPLE IDENTIFICATION

Samples were submitted and assigned sequential sample numbers. At your request, only the samples identified below were analyzed:

			equest,	only the	Samples	Identi	lied below	were	ana i yzed:	1
Во	rina	Samp							Criteria	Method
TESTS PERFORMED	12	A 7					(2)6-27		Fail.	Contained
AND RESULTS.	6	A 15		THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	-1 1.1-4		1-4.1' (2)	6-20	/-	1)
	6	B 16			-2 7.3-10			2) 6-20	. 0	1.1
	8	A 22			-1 0 - 3.4				1,	11
***	8	B 23) J-1404	HCE-8 S	-2 4.5-6	.5' 4.	7-6.7' 6-2	22	11	1.
	10	B 28) J-1404	HCE-10	S-2 3.5-7	7.51 4	.5-7.51 6-	-22	11	11
	10	B' 29) J-1404	HCE-10	s-3 8.5-	10.51	8.7-10.71	6-22	(1	()
	13	B 36) J-1404	HCE-12	S-2 5.5-9	9.0' 5	.5-9.01 6-	-27	Pass	Open
L	14	8 42) J-1404	HCE-14	5-4 6.8-	-8.86	-27		Fail	Contained

Samples were passed through a No. 10 sieve prior to analysis. Only material passing the sieve was analyzed. Percentages retained were as follow:

	7 15				8-B
% retained	6 3	6	L	/2	6
Major description	wood woo	od woo	od _—		hells
Minor description		lls, she cks roc	cks, -	_ 4 - B	
		29	36	42	
% retained	6	L/2	L/2	L/2	
Major description	shells				
Minor description -	wood				

This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Laurey Street. Seattle, Washington 98108 (206) 767-5060

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

2

Port of Seattle

LABORATORY NO.

85194

Routine analyses were then performed on the samples, with results as follow:

	 ~ A -	6-4 15	ived basis 6-8 16	3-A 8-B
Total Solids	52.0	45.5	54.8	52.9 50.0
	10-B 28	10 B'	12 -B	14 -B 42
Total Solids	52.8	75.2	74.9	68.2

		0,	ury	D9212	
7	1 5			16	

		_15	16		23
Total Organic Carbon	3.3	5.2	3.4	2.2	3.0
Total Volatile Solids	9.2	11.4	7.2	6.7	9.1
Oil & Grease	1.1	1.8	1.0	0.47	0.90
Sulfide as S	.030	.046	.076	.063	.043
Sand	22.7	7.6	42.8	28.8	16.9
Silt	55.3	65.0	42.1	_ 52.8	55.6
Clay	22.0	27.4	15.1	18.4	27.5
	28	20	36	1,2	

		_36	42
2.5	0.9	0.1	2.0
6.9	3.3	1.2	6.2
0.50	0.17	L/0.01	0.21
.007	.003	.004	.005
22.6	81.6	88.4	51.0
53.6	13.5	9.8	36.9
23.8	4.9	1.8	12.1
	2.5 6.9 0.50 .007 22.6 53.6	2.5 0.9 6.9 3.3 0.50 0.17 .007 .003 22.6 81.6 53.6 13.5	2.5 0.9 0.1 6.9 3.3 1.2 0.50 0.17 L/0.01 .007 .003 .004 22.6 81.6 88.4 53.6 13.5 9.8

Lauces Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206) 767-5060

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

3

Port of Seattle

LABORATORY NO.

85194

Samples were then analyzed for Halogenated Hydrocarbons in accordance with Washington State Department of Ecology WAC 173-303 with results as follow:

	12-A	6-A 15	6-B 16	8-A 22	8 - B 23
Halogenated Hydrocarbons* parts per million (mg/kg), as received basis	L/15.	L/15.	L/15.	L/15.	L/15.
	<u> 28</u>	10-B' 29	12-B 36	14-B 42	MCL
Halogenated Hydrocarbons* parts per million (mg/kg), as received basis	L/15.	L/15.	L/15.	L/15.	*

^{*} reported as the sum of the halogens bromide, chloride, fluoride and iodide. A result of less than 100 parts per million is classified as undesignated waste.

Samples were analyzed in accordance with 40 CFR, Part 261.24 for EP Toxicity, with results as shown below:

concentration, mg/L

		_15	16	_22	_23
Arsenic	L/0.1	L/0.1	L/0.1	L/0.1	L/0.1
Barium	L/0.5	L/0.5	L/0.5	L/0.5	L/0.5
Cadmium	L/0.02	L/0.02	L/0.02	L/0.02	L/0.02
Chromium	L/0.1	L/0.1	L/0.1	L/0.1	L/0.1
Lead	L/0.2	L/0.2	L/0.2	L/0.2	L/0.2

Laucks Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206) 767-5060

Certificate

Chemistry Microbiology and Technical Services

PAGE NO

4

LABORATORY NO.

85194

Port of Seattle

	concentration, mg/L					
	12-A	6 - A	6-B	8 - A	0_0	
		15	16	22	8-B	
Mercury Selenium Silver Endrin Methoxychlor Toxaphene	L/0.005 L/0.1 L/0.1 L/0.0002 L/0.001 L/0.005	L/0.005 L/0.1 L/0.1 L/0.0002 L/0.001	L/0.005 L/0.1 L/0.1 L/0.0002 L/0.001	L/0.005 L/0.1 L/0.1 L/0.0002 L/0.001	L/0.005 L/0.1 L/0.1 L/0.0002 L/0.001	
2,4-D 2,4,5-TP (silvex)	L/0.005 L/0.002	L/0.005 L/0.005 L/0.002	L/0.005 L/0.005 L/0.002	L/0.005 L/0.005 L/0.002	L/0.005	
Lindane	L/0.0001	L/0.0001	L/0.0001	L/0.0001	L/0.002 L/0.0001	

	10.0	concent	ration, mo	g/L	
	10-B 28	29 10-B'	12-B	14-B	MCL
Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver Endrin Methoxychlor Toxaphene 2,4-D 2,4,5-TP (silvex) Lindane	L/0.1 L/0.5 L/0.02 L/0.1 L/0.2 L/0.005 L/0.01 L/0.0002 L/0.001 L/0.005 L/0.005 L/0.002 L/0.002	L/0.1 L/0.5 L/0.02 L/0.1 L/0.2 L/0.005 L/0.01 L/0.0002 L/0.005 L/0.005 L/0.005 L/0.002 L/0.002	L/0.1 L/0.5 L/0.02 L/0.1 L/0.2 L/0.005 L/0.01 L/0.0002 L/0.001 L/0.005 L/0.005 L/0.005 L/0.002 L/0.002	L/0.1 L/0.5 L/0.02 L/0.1 L/0.2 L/0.005 L/0.01 L/0.0002 L/0.005 L/0.005 L/0.005 L/0.002 L/0.002	5.0 100. 1.0 5.0 5.0 0.2 1.0 5.0 0.02 10.0 0.5 10.0
				-, 0.0001	0.4

Laucks Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206) 767-5060

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

5

Port of Seattle

LABORATORY NO. 85194

Samples were analyzed also for Gravimetric Aromatic Hydrocarbons in accordance with Washington State Department of Ecology WAC 173-303. The method requires analysis of the sample through successive stages until the result obtained is less than 1% by weight (as received basis) or until the fourth stage has been completed. Results are as shown below:

			% by weigh	nt, as rece	ived basis*	
Stage:	æ.	12-A 	6-A 15	6 - B 16	8 - A 22	8-B
1. Soxhlet Extraction		.22	.28	•32	.22	.084
			0	-B' 13 9 36	-B 14-	- B
1. Soxhlet Extraction		.0	.0	.01	15 .19)

^{*} for 4,5,6 membered rings

Samples were analyzed for priority pollutants in accordance with 40 CFR, Part 261, with results as shown below:

organics	7	_15	16	22	23
timony senic ryllium dmium romium pper ad rcury	L/0.5 21. 0.32 5.8 89. 110. 160.	L/0.5 19. 0.32 10. 300. 190. 350.	L/0.5 15. 0.19 6.1 100. 91. 100.	L/0.5 15. 0.23 2.2 44. 74. 110.	L/0.5 20. 0.31 3.5 100. 130. 220.
pper ad	89. 110. 160.	300. 190. 350.	100. 91. 100.	44. 74. 110.	

Laucks Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206) 767-5060

Certificate

Chemistry Microbiology and Technical Services

PAGE NO.

6

Port of Seattle

LABORATORY NO.

85194

		parts per million (mg/kg), dry basis						
		12-A 7	6 - A 15	6-B 16	8 - A	8-B		
	Nickel	50.	58.	46.	40.			
	Selenium	0.6	L/0.5	0.5	L/0.5	57 • 0.8		
	Silver	2.0	3.7	1.6	0.6	3.2		
	Thallium	L/0.5	L/0.5	L/0.5	L/0.5	L/0.5		
	Zinc	420.	550.	320.	240.	360.		
_	Total Cyanide Total Phenol	5.6	1.3	0.6	L/0.5	0.7		
	Total Filelio	L/0.1	L/0.1	L/0.1	L/0.1	L/0.1		
	Volatile Organics (by GC/MS)	part	s per bil	lion (ug/k	g), dry bas	sis		
	Chloromethane	L/4.						
	Bromomethane	L/4.	L/4. L/4.	L/4. L/4.	L/4.	L/4.		
	Vinyl Chloride	L/4.	L/4.	L/4.	L/4. L/4.	L/4.		
	Chloroethane	L/4.	L/4.	L/4.	L/4.	L/4. L/4.		
	Methylene Chloride	240.	160.	180.	780.	290.		
	Acrolein	L/4.	L/4.	L/4.	L/4.	L/4.		
	*Acetone	1,100.	660.	L/20.	L/20.	L/20.		
	Acrylonitrile	L/4.	L/4.	L/4.	L/4.	L/4.		
	*Carbon Disulfide	L/4.	L/4.	L/4.	L/4.	L/4.		
	1,1-Dichloroethylene	L/4.	L/4.	L/4.	L/4.	L/4.		
	1,1-Dichloroethane trans-1,2-Dichloroethylene	L/4.	L/4.	L/4.	L/4.	L/4.		
	Chloroform	L/4.	L/4.	L/4.	- L/4.	L/4.		
	*2-Butanone	L/4. L/4.	L/4.	L/4.	L/4.	L/4.		
	1,2-Dichloroethane	L/4.	L/4. L/4.	L/4. L/4.	L/4.	L/4.		
	1,1,1-Trichloroethane	L/4.	L/4.	L/4.	L/4.	L/4.		
	*Vinyl Acetate	L/4.	L/4.	L/4.	L/4. L/4.	L/4.		
	Bromodichloromethane	- L/4.	L/4.	L/4.	L/4.	L/4. L/4.		
	Carbon Tetrachloride	L/4.	L/4.	L/4.	L/4.	L/4.		
	1,2-Dichloropropane	L/4.	L/4.	L/4.	L/4.	L/4.		
	Trichloroethylene	L/4.	L/4.	L/4.	L/4.	L/4.		
	Benzene	L/4.	L/4.	L/4.	L/4.	L/4.		

Lauces Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206) 767-5060

Certificate

Chemistry Microbiology and Technical Services

PAGE NO.

7

Port of Seattle

LABORATORY NO. 85194

	parts per billion (ug/kg), dry basis				
	12-A	6-A 15	6 - B 16	8 - A 22	8~ B
Chlorodibromomethane 1,1,2-Trichloroethane 2-Chloroethyl vinyl ether Bromoform *4-Methyl-2-pentanone *2-Hexanone -1,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene Chlorobenzene trans-1,3-Dichloropropene Ethylbenzene cis-1,3-Dichloropropene *Styrene *o-Xylene + p-Xylene **Fluorotrichloromethane	L/4. L/4. L/4. L/4. L/4. L/4. 20. L/4. 60. L/4. L/4.	L/4. L/4. L/4. L/4. L/4. L/4. 20. L/4. L/4. L/4. L/4.	L/4. L/4. L/4. L/4. 10. L/4. 50. L/4. 10. L/4. 10. L/4. 20.	L/4. L/4. L/4. L/4. L/4. L/4. L/4. L/4.	L/4. L/4. L/4. L/4. L/4. L/4. L/4. L/4.
Extractables (by GC/MS) N-nitrosodimethylamine Bis(2-chloroethyl)ether 2-Chlorophenol Phenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Bis(2-chloroisopropyl)ether Hexachloroethane N-nitroso-di-n-propylamine Nitrobenzene Isophorone	L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100.	L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100.	L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100.	L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100.	L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100.

Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206)767-5060

Certificate

Chemistry Microbiology and Technical Services

PAGE NO.

8

LABORATORY NO.

85194

Port of Seattle

	par	ts per bil	lion (ug/l	(a). drv ba	asis
	12- A 	6 - A 15	6 - B	8-A	8-B
2-Nitrophenol	L/100.	L/100.	L/100.	L/100.	L/100.
2,4-Dimethylphenol	L/100.	L/100.	L/100.	. L/100.	L/100.
Bis(2-chloroethoxy)methane	L/100.	L/100.	L/100.	L/100.	L/100.
2,4-Dichlorophenol	L/100.	L/100.	L/100.	L/100.	L/100.
1,2,4-Trichlorobenzene	L/100.	L/100.	L/100.	L/100.	L/100.
Naphthalene	L/100.	L/100.	3.800.	630.	L/100.
Hexachlorobutadiene	L/100.	L/100.	L/100.	L/100.	L/100.
4-Chloro-m-cresol	L/100.	L/100.	L/100.	L/100.	L/100.
Hexachlorocyclopentadiene	L/100.	L/100.	L/100.	L/100.	L/100.
2,4,6-Trichlorophenol	L/100.	L/100.	L/100.	L/100.	L/100.
2-Chloronaphthalene	L/100.	L/100.	L/100.	L/100.	L/100.
Acenaphthylene	L/100.	L/100.	L/100.	L/100.	L/100.
Dimethylphthalate	L/100.	L/100.	L/100.	L/100.	L/100.
2,6-Dinitrotoluene	L/100.	L/100.	L/100.	L/100.	L/100.
Acenaphthene	L/100.	L/100.	L/100.	2.040.	L/100.
2,4-Dinitrophenol	L/100.	L/100.	L/100.	L/100.	L/100.
2,4-Dinitrotoluene	L/100.	L/100.	L/100.	L/100.	L/100.
4-Nitrophenol	L/100.	L/100.	L/100.	L/100.	L/100.
Fluorene	L/100.	L/100.	L/100.	L/100.	L/100.
4-Chlorophenyl phenyl ether	L/100.	L/100.	L/100.	L/100.	L/100.
Diethylphthalate	L/100.	L/100.	L/100.	L/100.	L/100.
4,6-Dinitro-o-cresol	L/100.	L/100.	L/100.	L/100.	L/100.
1,2-Diphenylhydrazine	L/100.	L/100.	L/100.	L/100.	L/100.
4-Bromophenyl phenyl ether	L/100.	L/100.	L/100.	L/100.	L/100.
Hexachlorobenzene	L/100.	L/100.	L/100.	L/100.	L/100.
Pentachlorophenol	L/100.	L/100.	L/100.	L/100.	L/100.
Phenanthrene	8,400.	L/100.	L/100.	2.990.	L/100.
Anthracene	1,500.	L/100.	L/100.	1,350.	L/100.
Dibutylphthalate	L/100.	L/100.	L/100.	L/100.	L/100.
Fluoranthene	15,100.	L/100.	L/100.	6,130.	L/100.
Pyrene	L/100.	L/100.	L/100.	4.440.	L/100.
Benzidine	L/100.	L/100.	L/100.	L/100.	L/100.
			CONTRACT THE PART OF		

Laucks Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206)767-5060

Certificate

Chemistry. Microbiology. and Technical Services

PAGE NO

9

LABORATORY NO.

85194

Port of Seattle

	12-A	6 - A	6 - B	8 - A	8-B
	7	15 -	16	22	23
Butyl benzyl phthalate	L/100.	L/100.	L/100.	L/100.	L/100.
Benzo(a)anthracene	L/100.	L/100.	L/100.	L/100.	L/100.
Chrysene	L/100.	L/100.	L/100.	L/100.	L/100.
3.3°-Dichlorobenzidine	L/100.	L/100.	L/100.	L/100.	L/100.
Bis(2-ethylhexyl)phthalate	4,200.	3,600.	2,600.	2,100.	2,600.
N-nitrosodiphenylamine	L/100.	L/100.	L/100.	L/100.	L/100.
Di-n-octyl phthalate	L/100.	510.	L/100.	630.	L/100.
Benzo(b)fluoranthene	L/100.	L/100.	L/100.	L/100.	L/100.
Benzo(k)fluoranthene	L/100.	L/100.	L/100.	L/100.	L/100.
Benzo(a)pyrene	L/100.	L/100.	L/100.	L/100.	L/100.
Indeno(1,2,3-cd)pyrene	L/100.	L/100.	L/100.	L/100.	L/100.
Dibenzo(ah)anthracene	L/100.	L/100.	L/100.	L/100.	L/100.
Benzo(ghi)perylene	L/100.	L/100.	L/100.	L/100.	L/100.
2,3,7,8-Tetrachlorodibenzo-	L/100.	L/100.	L/100.	L/100.	L/100.
p-dioxin (TCDD)		_,	27.00.	27100.	L/100.
*Aniline	L/100.	L/100.	L/100.	L/100.	L/100.
*Benzoic Acid	L/100.	L/100.	L/100.	L/100.	L/100.
*Benzyl Alcohol	L/100.	L/100.	L/100.	L/100.	L/100.
*4-Chloroaniline	L/100.	L/100.	L/100.	L/100.	L/100.
*Dibenzofuran	L/100.	L/100.	L/100.	1,530.	L/100.
*2-Methylnaphthalene	L/100.	L/100.	L/100.	L/100.	L/100.
*2-Methylphenol	L/100.	L/100.	L/100.	L/100.	
*4-Methylphenol	L/100.	L/100.	L/100.	L/100.	L/100.
*2-Nitroaniline	L/100.	L/100.	L/100.		L/100.
*3-Nitroaniline	L/100.	L/100.	L/100.	L/100.	L/100.
*4-Nitroaniline	L/100.	L/100.		L/100.	L/100.
*2,4,5-Trichlorophenol	L/100.		L/100.	L/100.	L/100.
- 1 17 Trontor opnenor	L/100.	L/100.	L/100.	L/100.	L/100.

Laucks Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206) 767-5060

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

10

Port of Seattle

LABORATORY NO.

85194

	12-A	6-A	6-B	8-A	8-B
Pesticides (by GC/ECD)	7-	15	16	22	23
		-	-		
alpha—BHC	L/5.	L/5.	L/5.	L/5.	L/5.
beta-BHC	L/5.	L/5.	L/5.	L/5.	L/5.
delta—BHC	L/5.	L/5.	L/5.	L/5.	L/5.
gamma-BHC (lindane)	L/5.	L/5.	L/5.	L/5.	L/5.
heptachlor	L/5.	L/5.	L/5.	L/5.	10.
aldrin	L/5.	L/5.	L/5.	L/5.	L/5.
heptachlor epoxide	L/5.	L/5.	L/5.	L/5.	L/5.
dieldrin	L/5.	L/5.	L/5.	L/5.	L/5.
4,4°-DDE	L/5.	L/5.	L/5.		L/5.
4,4°-DDD	120.	170.	80.	L/10.	50.
endosulfan sulfate	L/10.	40.	L/10.	L/10.	40.
4,4°-DDT	40.	L/10.	15.	L/10.	30.
chlordane	L/10.	L/10.	L/10.	L/10.	L/10.
alpha endosulfan	L/10.	L/10.	L/10.	L/10.	L/10.
beta endosulfan	L/10.	L/10.	L/10.	L/10.	L/10.
endrin	L/10.	L/10.	L/10.	L/10.	L/10.
endrin aldehyde	L/10.	L/10.	L/10.	L/10.	L/10.
toxaphene	L/400.	L/400.	L/400.	L/400.	L/400.
PCB 1016	L/100.	L/100.	L/100.	L/100.	L/100.
PCB 1221	L/100.	L/100.	L/100.	L/100.	L/100.
PCB 1232	L/100.	L/100.	L/100.	L/100.	L/100.
PCB 1242	1,100.	970.	580.	L/100.	540.
PCB 1248	L/100.	L/100.	L/100.	L/100.	L/100.
PCB 1254	L/100.	L/100.	L/100.	L/100.	L/100.
PCB 1260	4,100.	5,640.	1,600.	1,200.	3,200.

Lauces Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206) 767-5060

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

11

LABORATORY NO.

85194

Port of Seattle

	parts pe	er million	(mg/kg), d	ry basis	
Inorganics	28 10-B	10-B'	12-B	14-B 42	
Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver Thallium Zinc Total Cyanide Total Phenol	L/0.5 16. 0.24 2.2 50. 98. 150. 0.89 44. 0.5 1.6 L/0.5 250. 0.6 L/0.1	L/0.5 5.1 0.13 0.7 17. 34. 66. 0.22 17. L/0.5 0.5 L/0.5 92. L/0.5 L/0.5	L/0.5 2.2 0.07 0.4 18. 10. 2.7 L/0.05 2.5 L/0.5 L/0.5 L/0.5 L/0.5 L/0.5	L/0.5 10. 0.14 1.5 30. 47. 62. 0.66 30. L/0.5 0.5 L/0.5 150. L/0.5	
Volatile Organics (by GC/MS)	part	s per bill	ion (ug/kg	, dry bas	is
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acrolein *Acetone Acrylonitrile *Carbon Disulfide 1,1-Dichloroethylene 1,1-Dichloroethane trans-1,2-Dichloroethylene Chloroform	L/4. L/4. L/4. 150. L/4. L/20. L/4. L/4. L/4. L/4.	L/3. L/3. L/3. 230. L/3. L/10. L/3. L/3. L/3. L/3. L/3.	L/3. L/3. L/3. 140. L/3. 320. L/3. L/3. L/3. L/3.	L/3. L/3. L/3. 340. L/3. 220. L/3. L/3. L/3. L/3.	L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1.

Laucks Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206) 767-5060

Certificate

Chemistry. Microbiology, and Technical Services

PAGE NO.

12

LABORATORY NO.

85194

Port of Seattle

	10-B	10-B'	12-B	14-B	· · · · · · · · · · · · · · · · · · ·
	28	29	36	42	Method Blank
*2-Butanone	L/4.	L/3.	L/3.	1 /2	
1,2-Dichloroethane	L/4.	L/3.	L/3.	L/3.	L/1.
1,1,1-Trichloroethane	L/4.	L/3.	L/3.	L/3.	L/1.
*Vinyl Acetate	L/4.	L/3.		L/3.	L/1.
Bromodichloromethane	L/4.	L/3.	L/3. L/3.	L/3.	L/1.
Carbon Tetrachloride	L/4.	L/3.		L/3.	L/1.
1,2-Dichloropropane	L/4.	L/3.	L/3.	L/3.	L/1.
Trichloroethylene	L/4.	L/3.	L/3.	L/3.	L/1.
Benzene	L/4.	L/3.	L/3. L/3.	L/3.	L/1.
Chlorodibromomethane	L/4.	L/3.		L/3.	L/2.
1,1,2-Trichloroethane	L/4.	L/3.	L/3.	L/3.	L/1.
2-Chloroethyl vinyl ether	L/4.	L/3.	L/3.	L/3.	L/1.
Bromoform	L/4.	L/3.	L/3.	L/3.	L/1.
*4-Methyl-2-pentanone	L/4.	L/3.	L/3.	L/3.	L/1.
*2-Hexanone	L/4.	L/3.	L/3.	L/3.	L/1.
1,1,2,2-Tetrachloroethane	L/4.		L/3.	L/3.	L/1.
Tetrachloroethylene	L/4.	L/3.	L/3.	L/3.	L/1.
Toluene	10.	L/3.	L/3.	L/3.	L/1.
Chlorobenzene	L/4.	5. L/3.	3.	5.	L/1.
trans-1,3-Dichloropropene	L/4.		L/3.	L/3.	L/1.
Ethylbenzene	L/4.	L/3.	L/3.	L/3.	L/1.
cis-1,3-Dichloropropene	L/4.	L/3.	L/3.	L/3.	L/1.
*Styrene	L/4.	L/3.	L/3.	L/3.	L/1.
*o-Xylene + p-Xylene	L/4.	L/3.	L/3.	L/3.	L/1.
**Fluorotrichloromethane		L/3.	L/3.	L/3.	L/1.
- si remonomethane	70.	30.	10.	40.	L/1.

Laucks Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206) 767-5060

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

13

LABORATORY NO.

85194

Port of Seattle

	10-B.	10-B	12-B	111 0	
Extractables (by GC/MS)	· -			14-B	Method
Excractables (by dc/ris)	_28	_29	_36	42	Blank
N-nitrosodimethylamine	L/100.	L/100.	1 /100	1 (4.00	
Bis(2-chloroethyl)ether	L/100.	L/100.	L/100.	L/100.	L/100.
2-Chlorophenol	L/100.	L/100.	L/100.	L/100.	L/100.
Phenol	L/100.		L/100.	L/100.	L/100.
1,3-Dichlorobenzene	L/100.	L/100.	L/100.	L/100.	L/100.
1,4-Dichlorobenzene	L/100.	L/100.	L/100.	L/100.	L/100.
1,2-Dichlorobenzene	L/100.	L/100.	L/100.	L/100.	L/100.
Bis(2-chloroisopropyl)ether	L/100.	L/100.	L/100.	L/100.	L/100.
Hexachloroethane		L/100.	L/100.	L/100.	L/100.
-nitroso-di-n-propylamine	L/100. L/100.	L/100.	L/100.	L/100.	L/100.
Nitrobenzene		L/100.	L/100.	L/100.	L/100.
Isophorone	L/100.	L/100.	L/100.	L/100.	L/100.
2-Nitrophenol	L/100.	L/100.	L/100.	L/100.	L/100.
2,4-Dimethylphenol	L/100.	L/100.	L/100.	L/100.	L/100.
Bis(2-chloroethoxy)methane	L/100.	L/100.	L/100.	L/100.	L/100.
2,4-Dichlorophenol	L/100.	L/100.	L/100.	L/100.	L/100.
1 2 h-Trichland	L/100.	L/100.	L/100.	L/100.	L/100.
1,2,4-Trichlorobenzene	L/100.	L/100.	L/100.	L/100.	L/100.
Naphthalene	L/100.	L/100.	L/100.	L/100.	L/100.
Hexachlorobutadiene	L/100.	L/100.	L/100.	L/100.	L/100.
4-Chloro-m-cresol	L/100.	L/100.	L/100.	L/100.	L/100.
Hexachlorocyclopentadiene	L/100.	L/100.	L/100.	L/100.	L/100.
2,4,6-Trichlorophenol	L/100.	L/100.	L/100.	L/100.	- L/100.
2-Chloronaphthalene	L/100.	L/100.	L/100.	L/100.	L/100.
Acenaphthylene	L/100.	L/100.	L/100.	L/100.	L/100.
Dimethylphthalate	L/100.	L/100.	L/100.	L/100.	L/100.
2,6-Dinitrotoluene	L/100.	L/100.	L/100.	L/100.	L/100.
Acenaphthene	1,370.	440.	L/100.	L/100.	L/100.
2,4-Dinitrophenol	L/100.	L/100.	L/100.	L/100.	L/100.
2,4-Dinitrotoluene	L/100.	L/100.	L/100.	L/100.	L/100.
4-Nitrophenol	L/100.	L/100.	L/100.	L/100.	L/100.
Fluorene	L/100.	L/100.	L/100.	L/100.	L/100.
4-Chlorophenyl phenyl ether	L/100.	L/100.	L/100.	L/100.	L/100.
			_,	-/ 100	-/100.

Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206) 767-5060

Certificate

Chemistry Microbiology, and Technical Services

LABORATORY NO.

14

PAGE NO.

85194

Port of Seattle

	Por	to per bi	TTTOIT (ug/k	y, ary b	asis
	10-B	10-B"	12-B	14-B	Method
		29	_36	42	Blank
Diethylphthalate	L/100.	L/100.	L/100.	L/100.	L/100.
4,6-Dinitro-o-cresol	L/100.	L/100.	L/100.	L/100.	L/100.
1,2-Diphenylhydrazine	L/100.	L/100.	L/100.	L/100.	L/100.
4-Bromophenyl phenyl ether	L/100.	L/100.	L/100.	L/100.	L/100.
Hexachlorobenzene	L/100.	L/100.	L/100.	L/100.	L/100.
Pentachlorophenol	L/100.	L/100.	L/100.	L/100.	L/100.
Phenanthrene	3,690.	L/100.	L/100.	L/100.	L/100.
Anthracene	1,290.	L/100.	L/100.	L/100.	L/100.
Dibutylphthalate	L/100.	L/100.	L/100.	L/100.	L/100.
Fluoranthene	9,200.	L/100.	L/100.	L/100.	L/100.
Pyrene	L/100.	L/100.	L/100.	3,670.	L/100.
Benzidine	L/100.	L/100.	L/100.	L/100.	L/100.
Butyl benzyl phthalate	L/100.	L/100.	L/100.	L/100.	L/100.
Benzo(a)anthracene	L/100.	L/100.	L/100.	L/100.	L/100.
Chrysene	L/100.	L/100.	L/100.	L/100.	L/100.
3.3°-Dichlorobenzidine	L/100.	L/100.	L/100.	L/100.	L/100.
Bis(2-ethylhexyl)phthalate	1,800.	3,200.	1.390.	L/100.	L/100.
N-nitrosodiphenylamine	L/100.	L/100.	L/100.	L/100.	L/100.
Di-n-octyl phthalate	L/100.	L/100.	670.	L/100.	L/100.
Benzo(b)fluoranthene	L/100.	L/100.	L/100.	L/100.	L/100.
Benzo(k)fluoranthene	L/100.	L/100.	L/100.	L/100.	L/100.
Benzo(a)pyrene	L/100.	L/100.	L/100.	L/100.	L/100.
Indeno(1,2,3-cd)pyrene	L/100.	L/100.	L/100.	L/100.	L/100.
Dibenzo(ah)anthracene	L/100.	L/100.	L/100.	L/100.	L/100.
Benzo(ghi)perylene	L/100.	L/100.	L/100.	L/100.	L/100.
2.3.7.8-Tetrachlorodibenzo- p-dioxin (TCDD)	L/100.	L/100.	L/100.	L/100.	L/100.
*Aniline	1 /100				
*Benzoic Acid	L/100.	L/100.	L/100.	L/100.	L/100.
*Benzyl Alcohol	L/100.	L/100.	L/100.	L/100.	L/100.
*4-Chloroaniline	L/100.	L/100.	L/100.	L/100.	L/100.
*Dibenzofuran	L/100.	L/100.	L/100.	L/100.	L/100.
	L/100.	L/100.	L/100.	L/100.	L/100.

Lauces Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206) 767-5060

Certificate

Chemistry. Microbiology. and Technical Services

PAGE NO.

15

LABORATORY NO.

85194

Port of Seattle

	par	ts per bil	llion (ug/k	g), dry ba	sis
	10-B 28	10-B'	36 12-B	14-B 42	Method Blank
<pre>*2-Methylnaphthalene *2-Methylphenol *4-Methylphenol *2-Nitroaniline *3-Nitroaniline *4-Nitroaniline *4-Nitroaniline *2,4,5-Trichlorophenol</pre>	L/100. L/100. L/100. L/100. L/100. L/100.	L/100. L/100. L/100. L/100. L/100. L/100.	L/100. L/100. L/100. L/100. L/100. L/100.	L/100. L/100. L/100. L/100. L/100. L/100. L/100.	L/100. L/100. L/100. L/100. L/100. L/100.
Pesticides (by GC/ECD)					
alpha—BHC beta—BHC delta—BHC gamma—BHC (lindane) heptachlor aldrin heptachlor epoxide dieldrin 4,4°—DDE 4,4°—DDD endosulfan sulfate	L/5. L/5. L/5. L/5. L/5. L/5. L/5. 15. 90. L/10.	L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5.	L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5.	L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5.	
4,4°-DDT chlordane alpha endosulfan beta endosulfan endrin endrin aldehyde	L/10. L/10. L/10. L/10. L/10.	L/10. L/10. L/10. L/10. L/10. L/10.	L/10. L/10. L/10. L/10. L/10. L/10.	L/10. L/10. L/10. L/10. L/10. L/10.	

Laucks Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206) 767-506

Chemistry Microbiology, and Technical Services

PAGE NO.

16

Port of Seattle

LABORATORY NO.

85194

	parts per	billion	(ug/kg),	dry basis
	10-B	29	12-B	14-B 42
toxaphene	L/400.	L/400.	L/400.	L/400.
PCB 1016	L/100.	L/100.	L/100.	L/100.
PCB 1221	L/100.	L/100.	L/100.	L/100.
PCB 1232	L/100.	L/100.	L/100.	L/100.
PCB 1242		L/100.	L/100.	L/100.
PCB 1248	L/100.	L/100.	L/100.	L/100.
PCB 1254	L/100.	L/100.	100.	L/100.
PCB 1260	3,100.	1,000.	L/100.	200.

Key

L/ indicates "less than"
MCL=Maximum Contamination Level allowed per regulation.
*Additional compounds from the EPA°s Hazardous Substances List.
**Other compounds of interest identified, in estimated amounts.

Respectfully submitted,

Laucks Testing Laboratories, Inc.

J. M. Wwens

JMO:rtv

II. SECOND SERIES DATA ONLY

Testing Laboratories, Inc. 940 South Harney Street, Seattle, Washington 98108 (206)767-5060

Lauces Testing Laboratories, Inc. 940 South Harney Street. Seattle, Washington 98108 (206) 767-5060

Certificate

Chemistry. Microbiology. and Technical Services

CLIENT Port of Seattle

P.O. Box 2309

Seattle, WA 98111

ATTN: Doug Hotchkiss

REPORT ON SPOILS

LABORATORY NO. 86772

DATE Oct. 31, 1984

PO # P-03613

SAMPLE IDENTIFICATION

Samples which were on hold were released for analysis on Sept. 21, 1984. Samples were assigned new laboratory number 86772-1/9. Samples had previously been identified by Laucks Testing Laboratories and Hart Crowser & Associates as shown below:

TESTS PERFORMED AND RESULTS:

Boring	Samp	LTL #	HC #	Criteria	Disposal
1) HC-13	C	85194-37 85194-38	1351 1352	Pass	Open
3) 4) HC-13	B	85194-11 85194-12	1352B 1353	Fail	Contained
5) H.C-10	C	85194-30	1054	Pass	
6) 7) HC-9	В	85194-33 85194-34	953 954	Pars	Open
8) HC-7	8	85194-19	 752	Fail	Contained
9) HC-7	C	85194-20	753	Fail	Contained

Three composite samples were created by homogeneously mixing equal weight portions from the indicated samples.

Composite A: Samples 1, 2 above Composite B: Samples 3, 4 above Composite C: Samples 6, 7 above

Samples 5, 8, and 9 were analyzed without compositing.

Samples were passed through a No. 10 sieve prior to analysis. Only material passing the sieve was analyzed. Percentages retained were as follow:

	13 - C	13-B	9 - B	10-C	7- B	7-C
% retained major description minor description	L/2.	5. wood	L/2.	L/2.	L/2.	16. rocks

Lauces Testing Laboratories, Inc. 940 South Harney Street. Seattle, Washington 98108 (206) 767-5060

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

Port of Seattle

LABORATORY NO. 86772

	Routine analyses were	then perf	formed on the state of the stat	he sample 9-B C	s, with res 10-6 5	ults as fo 7-8 8	11ow: 7-c
			%,	as recei	ved basis		
	Total Solids	77.8	60.8	69.9	78.3	44.6	53.5
				%, dry	basis	8. 1011	
-	Total Organic Carbon Total Volatile	0.2	4.0	1.5	0.5	3.8	4.0
	Solids Oil & Grease Sulfide as S	1.3 0.07 0.003	7.4 0.88 L/0.001	3.1 0.25 0.002	1.4 0.02 L/0.001	11.5 2.0 0.33	6.6 0.98 0.10
	Grain Size Analysis						
	Sand Silt Clay	90.2 9.8 L/0.1	35.3 46.6 18.1	65.7 27.2 7.1	88.6 9.4 2.0	10.8 70.4 18.8	8.8 60.1 31.1

Samples were analyzed for priority pollutants in accordance with 40 CFR, part 136, with results as shown below:

Inorganics		parts per million (mg/kg), dry basis						
Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.		
	3.1	19.	4.0	2.2	23.	15.		
	0.16	0.33	0.21	0.13	0.22	0.50		
	0.2	3.2	0.5	0.1	7.4	4.8		
	15.	49.	18.	10.	110.	92.		
	14.	97.	26.	15.	200.	150.		
	18.	170.	40.	33.	340.	190.		
	0.2	1.1	0.2	L/0.1	1.6	0.9		
	9.	36.	20.	10.	61.	92.		
	L/0.5	0.5	L/0.5	L/0.5	1.5	0.5		

Lauces Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206) 767-5060

Certificate

Chemistry. Microbiology. and Technical Services

PAGE NO.

Port of Seattle

LABORATORY NO. 86772

	13-C _A	+ 3 - B	9 - B C	10-C	7-B	7-c
		parts p	er million	(mg/kg),	dry basis	
Silver Thallium Zinc Total Cyanide Total Phenol	0.24 L/1. 38. L/0.10 L/0.15	2.5 L/1. 320. 0.32 L/0.15	0.21 L/1. 80. L/0.10 L/0.15	L/0.05 L/1. 27. L/0.10 L/0.15	3.4 L/1. 700. 0.60 L/0.15	1.9 L/1. 970. 0.24 L/0.15

Volatile Organics	(by GC/MS)	parts pe	r billion	(ug/kg)		
	A	В	C	5	8	9	Method Blank
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acrolein *Acetone Acrylonitrile *Carbon Disulfide 1,1-Dichloroethyle	L/20. 455. L/20. L/10.	L/10. L/10. L/10. L/10. 828. L/20. 939. L/20. L/10.	L/10. L/10. L/10. L/10. 646. L/20. 316. L/20. L/10.	L/10. L/10. L/10. L/10. 394. L/20. 330. L/20. L/10.	L/10. L/10. L/10. L/10. 360. L/20. 334. L/20. L/10.	L/10. L/10. L/10. L/10. 1040. L/20. 313. L/20. L/10.	L/10. L/10. L/10. tr L/20. 18. L/10. L/10.
	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.
1,1-Dichloroethane	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.
trans-1,2-Dichloro Chloroform *2-Butanone 1,2-Dichloroethane	L/10. L/10. L/10.	L/10. L/10. L/10.	L/10. - tr L/10.	L/10. L/10. L/10.	L/10. tr L/10.	L/10. L/10. L/10.	L/10. L/10. L/10.
1,1,1-Trichloroeth	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.
*Vinyl Acetate Bromodichlorometha	L/10. L/10.	L/10. L/10.	L/10. tr	L/10. L/10.	L/10. L/10.	L/10. L/10.	L/10. L/10.
	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.

Testing Laboratories, Inc. 940 South Harney Street. Seattle, Washington 98108 (206) 767-5060

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

Port of Seattle

LABORATORY NO. 86772

			. parts p	er billio	on (ug/kg)		
	13 - C	13-B	9-B	10-C 5	7-B	7-C	Method Blank
Carbon Tetrachlorio	de				*		
1,2-Dichloropropane	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.
Trichloroethylene Benzene Chlorodibromomethar	L/10. L/10. L/10. ne	L/10. L/10. L/10.	L/10. tr L/10.	L/10. L/10. L/10.	L/10. L/10. L/10.	L/10. L/10. L/10.	L/10. L/10. L/10.
1,1,2-Trichloroetha	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.
2-Chloroethyl vinyl	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.
	L/10. L/10.	L/10. L/10.	L/10. L/10.	L/10. L/10.	L/10. L/10.	L/10. L/10.	L/10. L/10.
	L/10. L/10.	L/10. L/10.	L/10. L/10.	L/10. L/10.	L/10. L/10.	L/10. L/10.	tr tr
	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.
Toluene	L/10. L/10. L/10.	L/10. L/10. L/10.	L/10. L/10. L/10.	L/10. L/10. L/10.	L/10. tr L/10.	L/10. L/10. L/10.	L/10. L/10. L/10.
	L/10. L/10.	L/10. L/10.	L/10. L/10.	L/10. L/10.	L/10. L/10.	L/10. L/10.	L/10. L/10.
Styrene	L/10. L/10. L/10.	L/10. L/10. L/10.	L/10. L/10. L/10.	L/10. L/10. L/10.	L/10. L/10. L/10.	L/10. L/10. L/10.	L/10. L/10. L/10.
tr = 1-10 ug/kg							

tr = 1-10 ug/kg

Laurey Street. Seattle, Washington 98108 (206) 767-5060

Certificate

Chemistry. Microbiology. and Technical Services

PAGE NO.

Port of Seattle

LABORATORY NO. 86772

	Extractables (by GC/MS	5)	part	s per bil	lion (ug/	kg)	
	1	3-C 13-	B 9-	B 10- 5	C 7-8	7-6	Method Blank
	N-nitrosodimethylamine		L/100.	L/100.	L/100.	L/100.	L/100.
	Bis(2-chloroethyl)ethe	er		-		L/100.	L/100.
	2-Chlorophenol L/10 Phenol L/10 1,3-Dichlorobenzene	00. L/100.	L/100. L/100. L/100.	L/100. L/100. L/100.	L/100. L/100. L/100.	L/100. L/100. L/100.	L/100. L/100. L/100.
	L/10	00. L/100.	L/100.	L/100.	L/100.	L/100.	L/100.
-	1,4-Dichlorobenzene L/10 1,2-Dichlorobenzene	io. L/100.	L/100.	L/100.	L/100.	L/100.	L/100.
	L/10 Bis(2-chloroisopropyl)		L/100.	L/100.	L/100.	L/100.	L/100.
	L/10 Hexachloroethane L/10 N-nitroso-di-n-propyla	0. L/100. 0. L/100.	L/100. L/100.	L/100. L/100.	L/100. L/100.	L/100. L/100.	L/100. L/100.
	Nitrobenzene L/10 Isophorone L/10 2-Nitrophenol L/10 2,4-Dimethylphenol	0. L/100. 0. L/100. 0. L/100.	L/100. L/100. L/100. L/100.	L/100. L/100. L/100. L/100.	L/100. L/100. L/100. L/100.	L/100. L/100. L/100. L/100.	L/100. L/100. L/100. L/100.
	L/10 Bis(2-chloroethoxy)met	0. L/100.	L/100.	L/100.	L/100.	L/100.	L/100.
	L/10 2,4-Dichlorophenol		L/100.	L/100.	L/100.	L/100.	L/100.
	L/10 1,2,4-Trichlorobenzene		L/100.	L/100.	L/100.	L/100.	L/100.
	L/10 Naphthalene L/10 Hexachlorobutadiene	0. L/100.	L√100. tr	L/100. tr	L/100. 190.	L/100. 280.	L/100. L/100.
	L/10 4-Chloro-m-cresol	0 L/100.	L/100.	L/100.	L/100.	L/100.	L/100.
	L/10 Hexachlorocyclopentadi		L/100.	L/100.	L/100.	L/100.	L/100.
	L/10		L/100.	L/100.	L/100.	L/100.	L/100.

Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206) 767-5060

Certificate

Chemistry. Microbiology. and Technical Services

PAGE NO.

Port of Seattle

LABORATORY NO. 86772

	13-6		8 9-1		7-E	7-0	Method
	A	B	_ <u>C</u>	5	8	9	<u>Blank</u>
2,4,6-Trichloroph		. /a			ar.		
2-Chloronaphthale	L/100. ne	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.
Acenaphthylene Dimethylphthalate	L/100. L/100.	L/100. L/100.	-L/100. L/100.	L/100. L/100.	L/100. 160.	L/100. L/100.	L/100. L/100.
2,6-Dinitrotoluene		L/100.	L/100.	L/100.	L/100.	L/100.	L/100.
Acenaphthene 2,4-Dinitrophenol	L/100. L/100.	L/100. L/100.	L/100. L/100.	L/100. L/100.	L/100. 120.	L/100. 490.	L/100. L/100.
2,4-Dinitrotoluene	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.
4-Nitrophenol Fluorene 4-Chlorophenyl phe	L/100. L/100. L/100. enyl ethe	L/100. L/100. 210.	L/100. L/100. L/100.	L/100. L/100. L/100.	L/100. L/100. 130.	L/100. L/100. 590.	L/100. L/100. L/100.
	L/100. L/100.	L/100. L/100.	L/100. L/100.	L/100. L/100.	L/100. L/100.	L/100. L/100.	L/100. L/100.
	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.
4-Bromophenyl phen	L/100. Iyl ether	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.
	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.	L-/100.
Pentachlorophenol	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.
Phenanthrene Anthracene Dibutylphthalate Fluoranthene Pyrene	L/100. 150. 100. L/100. 480. 340. L/100.	L/100. 910. 1180. L/100. 5950. 5580. L/100.	L/100. 200. 240. L/100. 520. 330. L/100.	L/100. L/100. L/100. L/100. L/100. L/100. L/100.	L/100. 580. 880. L/100. 6370. 3790. L/100.	L/100. 1620. 650. L/100. 3910. 2560. L/100.	L/100. L/100. L/100. L/100. L/100. L/100. L/100.

Testing Laboratories, Inc. 940 South Harney Street. Seattle, Washington 98108 (206) 767-5060

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

LABORATORY NO. 87662

Port of Seattle

	13-0 A	13 - B		per bill		0,	_ Method Blank	
Butyl benzyl phth	nalate					_	<u> </u>	
Benzo(a)anthracer Chrysene 3,3'-Dichlorobenz	200.	L/100. 2110. 2200.	L/100. - 140. - 160.	L/100. L/100. L/100.	L/100. 1570. 1620.	L/100. 1040. 1070.	L/100. L/100. L/100.	
Bis(2-ethylhexyl)	L/100.							
N-nitrosodiphenyl	2390.	2550.	780.	460.	4760.	L/100.	L/100.	
Di-n-octyl phthal	L/100.							
Benzo(b)fluoranth	L/100.							
Benzo(k)fluoranth	320.	2200.	160.	L/100.	2330.	1270.	L/100.	
Benzo(a)pyrene Indeno(1,2,3-cd)p	260.	1580.	360.	L/100.	** 1480.	** 1180.	** L/100.	
Dibenzo(ah)anthra	L/100.	630.	L/100.	L/100.	L/100.	L/100.	L/100.	
Benzo(ghi)perylen	L/100.							
	L/100.							
*Aniline *Benzoic Acid *Benzyl Alcohol *4-Chloroaniline *Dibenzofuran *2-Methylnaphthale	L/100. L/100. L/100. L/100. L/100. L/100.							
*2-Methylphenol *4-Methylphenol	L/100. L/100. L/100.	L/100. L/100. L/100.	L/100. L/100. L/100.	L/100. L/100. L/100.	110. L/100. L/100.	L/100. L/100. L/100.	L/100. L/100. L/100.	

Laucks Testing Laboratories, Inc. 940 South Harney Street. Seattle, Washington 98108 (206) 767-5060

Certificate

Chemistry. Microbiology, and Technical Services

PAGE NO.

Port of Seattle

LABORATORY NO. 86772

			parts	per billi	on (ug/kg	1)	
	13-C A	13-B	9-B C	10-c 5	7-B	7-6	Method Blank
*2-Nitroaniline *3-Nitroaniline *4-Nitroaniline *2,4,5-Trichlorop	L/100. L/100. L/100.						
Σ, 1, 3 11 1611101 0ρ	L/100.						

tr = 50-100 ug/kg

	A	B	<u>C</u>	5	8	9
Pesticides (by GC)	/ECD)		parts per	billion	(ug/kg)	
alpha-BHC beta-BHC delta-BHC gamma-BHC (lindane	L/1. L/1. L/1.	L/1. L/1. L/1.	L/1. L/1. L/1.	L/1. L/1. L/1.	L/1. L/1. L/1.	L/1. L/1. L/1.
heptachlor aldrin heptachlor epoxide dieldrin	L/1. L/1. L/1. L/1. L/1. L/1. L/1.	L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1.	L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1.	L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1.	L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1.	L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1.

Lauces Testing Laboratories, Inc. 940 South Harney Street. Seattle, Washington 98108 (206) 767-5060

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

Port of Seattle

LABORATORY NO. 86772

	A	B	<u>C</u>	5	7-5	7-6
		pa	arts per	billion ((ug/kg)	
PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1248 PCB 1254 PCB 1260	L/20. L/20. L/20. L/20. L/20. L/20. 66.	L/20. L/20. L/20. L/20. L/20. L/20. 120.	L/20. L/20. L/20. L/20. L/20. L/20. L/20.	L/20. L/20. L/20. L/20. L/20. L/20. L/20.	L/20. L/20. L/20. L/20. L/20. L/20. 140.	L/20. L/20. L/20. L/20. L/20. L/20. 150.

13-C

Key

L/ indicates "less than".

* Additional compounds from the EPA's Hazardous Substances List.

Respectfully submitted,

Laucks Testing Laboratories, Inc.

M. Owens

JMO: veg

^{**} Value shown for Benzo(b)fluoranthene is the sum of the isomers Benzo(b)fluoranthene and Benzo(k)fluoranthene.

am Lestinc

4900 9TH AVENUE N.W., • SEATTLE, WASHINGTON 98107-3697 • 206/783-4700 ANALYSIS REPORT

 Π . T-32 and P-28 DATA AND (QA/QC)

4900 9TH AVENUE N.W., • SEATTLE, WASHINGTON 98107-3697 • 206/783-4700

CLIENT: Port of Seattle

DATE RECEIVED: 10/8/84

REPORT TO: Mr. Doug Hotchkiss

DATE REPORTED: 12/7/84

LABORATORY SAMPLE NUMBER - CLIENT IDENTIFICATION CROSS REFERENCE

Labor	catory Sam	ole No.		Port of	Seattle Identificati	Lon Criteria	Disposal
	81286			Sample(D)	A & D Composite	Fail	Containe
	81287	',	В	В	В	Fail	ll
	81288	U	В	C	С	', *	1 9
	81289	- "	B·	D	E	1, *	1
-	81290	T-32	10	D+E	F & G Composite	Pass	Open
	81291	l t	13.	D	Н	11	"
	81292	i.	1-3	E	I	(1	11
	81293	lt .	6	С	J		(r
	81294	. 4	6	D	K		
	81295		. 7	Е	М		
	81296	- u	7		M ¹		
	81297		7	F	N	"	<i>(</i> ()
*.	81298	. tr	9	С	0		
	81299		9.	D	Р		
	81300	,,	12	C	S	٠.	"
	81301	U	12	D & E	T & U Composite	11	11
	81302	P-28	A	В	W	Fail*	Contain.

* These failures are a result of bioassays.

The chemistry values pass the 4-mile Rock disposal site criteria.

4900 9TH AVENUE N.W., • SEATTLE, WASHINGTON 98107-3697 • 206/783-4700

CLIENT: Port of Seattle

DATE RECEIVED: 10/8/84

REPORT TO: Doug Hotchkiss

DATE REPORTED: 12/7/84

Terminal 30 Expansion
Sediment Analysis

		ediment Ana	AGREEMENT # P-03611						
		AND DESCRIPTION OF THE PERSON	28	The Allian Date of The State Country allows in the Country of the	and the second construction of the contract of	Contract of the Contract of th	. 3 3	THEOLOGICAL INC. AND A STORE AND A STORE AND A STORE OF THE STORE AND A STORE AND A STORE AND A STORE AND A ST	Arraya San Constitution and
Laboratory Sample Number	81286	81287	81288	81289	81290	81291	81292	81293	81294
Client Identification	A & D Composite B+C-A	В - В	С В - С	B – D	F & G Composite	H H C-13-D	I HC-13 E	J HC-6-C	K HC-6-D
Antimony (μg/g)	1.47	<0.150	<0.150	<0.150	<0.150 <0.150]	<0.150	<0.150	<0.150	<0.150
Arsenic (µg/g)	11.	1.7	7.1	7.4	5.0	5.0 4.5]	3.2	3.8	2.9
Beryllium (μg/g)	1.07	0.954	0.907	1.23	0.796	1.04	0.971	0.842	0.924
Cadmium (µg/g)	7.21	0.753	0.648	0.856	$\begin{bmatrix} 1.16 \\ 0.701 \end{bmatrix}$	0.664	0.755	0.711	0.650
Chromium (µg/g)	82.8	22.8	25.7	23.2	$\begin{bmatrix} 28.3 \\ 24.6 \end{bmatrix}$	20.9	17.3	20.0	14.8
Copper (µg/g)	111.	22.1	17.5	23.4	$\frac{19.5}{20.9}$]	17.1	13.2	20.5	11.7
Lead (µg/g)	153.	1.15	1.08	2.52	1.59 1.19	6.01	8.36	52.6	1.10
Mercury (µg/g)	0.16 0.17	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
Nickel (μg/g)	38.6	15.8	13.8	18.9	$\begin{bmatrix} 29.5 \\ 19.7 \end{bmatrix}$	13.9	12.7	12.1	11.2
Selenium (µg/g)	0.272	0.088	0.129	0.139	<0.060	<0.060 <0.060]	<0.060	<0.060	<0.060
Silver (µg/g)	31.3	0.853	0.799	0.982	1.45	0.981	0.985	0.816	0.875
Thallium (µg/g)	16.6	9.79	11.4	9.07	10.5 9.85]	9.81	8.09	8.42	5.60

[°]All results reported on a dry weight basis.

REPORT TO: Doug Hotchkiss

DATE RECEIVED: 10/8/84

DATE REPORTED: 12/7/84

AGREEMENT# P-03661

Terminal 30 Expansion Sediment Analysis

	, and the state of							
	PIE	R 28			T-	-32		
Laboratory Sample Number	81286 81287	81288	81289	81290	81291	81292	81293	81294
Client Identification	A & D B	C	E	F & G	Н	I	J	K
	Composite B-B	B-C	B-P	Composite /O-D ←E	13-D	13-E	6-C	6-D
Zinc (µg/g)	567. 42.4	35.4	45.1	41.2 43.7	36.4	33.2	36.6	32.5
Cyanide (μg/g)	$\langle 1.1 \rangle \langle 1.1 \rangle \langle 1.1 \rangle$	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1
Phenol (µg/g)	$\langle 1.5 \rangle \langle 1.5 \rangle$	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	1.7
Oil & Grease (μg/g)	35200. 290.	₹75.	<75.	120.	2940.	800.	457. ₃₃₆ .]	296.
Total Solids (%)	57.49 76.40	75.74	74.74	78.04	75.96	76.19	78.65	79.30
Total Volatile Solids (%)	9.01 2.00	2.41	2.39	2.01	2.48	2.58	1.57	1.26
Total Organic Carbon (%)	2.49 0.50	0.46	0.46	0.38	0.66	0.79	0.17	0.27
Sulfides (µg/g)	454. <7.	<7.	19.	33.	71.	48.	10.	16.

[°]All results reported on a dry weight basis.

4900 9TH AVENUE N.W., • SEATTLE, WASHINGTON 98107-3697 • 206/783-4700

CLIENT: Port of Seattle

DATE RECEIVED: 10/8/84

REPORT TO: Doug Hotchkiss

DATE REPORTED: 12/7/84

Terminal 30 Expansion
Sediment Analysis

AGREEMENT # P-03611

		Sealmer	nt Analysis	32			- , - 1	P-28
Laboratory Sample Number	81295	81296	81297	81298	81299	81300	81301	81302
Client Identification	М 7 - Е	M ¹ 7-E	N 7-F	0 9-c	P. 9-D	S 12-C	T & U Composite	W A - B
Antimony (µg/g)	<0.150	<0.150	<0.150 <0.150]	<0.150	<0.150	<0.150	<0.150	<0.150 <0.150]
Arsenic (µg/g)	3.4	4.0	5.2	1.7	4.7	2.4	$\frac{3.9}{4.5}$]	3.5
Beryllium (μg/g)	0.572	0.785	1.05	0.725	1.12	0.875		0.791 0.587
Cadmium (µg/g)	0.532	0.829	$\begin{bmatrix} 1.26 \\ 0.863 \end{bmatrix}$	0.819	0.699	0.797	0.838	0.741
Chromium (µg/g)	16.4	18.8	$\begin{bmatrix} 17.5 \\ 14.7 \end{bmatrix}$	18.7	25.1	31.5	20.1	$\frac{16.5}{17.6}$]
Copper (µg/g)	12.2	13.3	16.7 17.0	12.4	15.0	41.0	16.2	13.3
Lead (μg/g)	1.97	2.18	4.28	4.45	3.24	3.89	4.47	$\begin{bmatrix} 1.30 \\ 1.27 \end{bmatrix}$
Mercury (µg/g)	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
Nickel (μg/g)	12.4	15.7	$^{28.0}_{19.1}$]	15.0	15.2	23.5	15.6	$\begin{bmatrix} 13.2 \\ 13.5 \end{bmatrix}$
Selenium (µg/g)	<0.060	<0.060	<0.060	<0.060	<0.060	<0.060	<0.060 <0.060]	<0.060
Silver (µg/g)	0.788	0.785	1.02	0.796	0.849	0.622	1.03	1.12
Thallium $(\mu g/g)$	5,72	8.72	8.36 7.28]	6.79	7.89	5.64	8.38	8.87 9.71

[°]All results reported on a dry weight basis.

Continued.

REPORT TO: Doug Hotchkiss

DATE RECEIVED: 10/8/84

DATE REPORTED: 12/7/84

Terminal 30 Expansion Sediment Analysis

AGREEMENT # P-03611

	T-32							
Laboratory Sample Number	81295	81296	81297	81298	81299	81300	81301	81302
Client Identification	М 7-Е	м ¹ 7-Е	N 7-F	0 9-C	P 9-D	S 12-c	T & U Composite	W A-B
Zinc (μg/g)	34.3	34.7	40.2	36.0	38.7	36.4	35.5	36.9 36.8
Cyanide (µg/g)	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1
Phenol (µg/g)	<1.5	<1.5	<1.5	<1.5	$\begin{pmatrix} 1.5 \\ \langle 1.5 \end{pmatrix}$	<1.5	<1.5	<1.5
0il & Grease $(\mu g/g)$	267.	692.	<75. 108.]	871.	545.	1100.	<75.	431. _{657.}]
Total Solids (%)	78.54	$\frac{78.09}{77.79}$]	79.02	80.30	77.12	79.45	77.79	77.75 77.50]
Total Volatile Solids (%)	1.44	$\begin{bmatrix} 1.41 \\ 1.59 \end{bmatrix}$	1.76	1.01	2.09	0.86	1.84	$\begin{bmatrix} 2.23 \\ 2.13 \end{bmatrix}$
Total Organic Carbon (%)	0.32	0.28	0.53	0.12	0.45	0.087	0.48	0.32
Sulfides (µg/g)	47.	39.	21.	11.	22.	9.	22.	46.

 $^{{}^{\}circ}\text{All}$ results reported on a dry weight basis.

4900 9TH AVENUE N.W., • SEATTLE, WASHINGTON 98107-3697 • 206/783-4700

CLIENT: Port of Seattle

DATE REPORTED: 12/7/84

REPORT TO: Doug Hotchkiss

Pesticide & PCB Analysis

Laboratory Sample #

*

81286 **

Client Identification

A & D Composite P-28 B & C-A

Parameter	Detection Limit $(\mu g/g)$	Concentration $(\mu g/g)$
Aldrin	0.001	<.005
Dieldrin	0.001	<.010
p,p-DDT	0.002	<.03
p,p-DDE	0.001	<.010
p,p-DDD	0.002	<.03
Endosulfan I	0.001	<.010
Endosulfan II	0.001	<.010
Endosulfan Sulfate	0.002	<.03
Endrin	0.001	<.010
Endrin Aldehyde	0.002	<.03
Heptachlor	0.001	<.005
Heptachlorepoxide	0.001	<.005
a-BHC	0.001	<.005
В-ВНС	0.001	<.005
G-BHC	0.001	<.005
D-BHC	0.001	<.005
Toxaphene	0.10	<0.10
Chlorodane	0.020	<0.020
PCB's (all isomers)	0.010_	0.223 (A-1260)

^{*}All samples (81287 - 81302) below listed detection limits except 31286.

^{**}Sample 81286 Detection Limits for Pesticides are higher than the regular limits because of the presence of the PCB's.

^{*}Results on a dry weight basis.

4900 9TH AVENUE N.W., • SEATTLE, WASHINGTON 98107-3697 • 206/783-4700

CLIENT: Port of Seattle

REPORT TO: Mr. Doug Hotchkiss

DATE RECEIVED: 10/8/84

DATE REPORTED: 12/7/84

AGREEMENT # P-03611

	f	7-28			T-32	
Laboratory Sample No.	81286	81287	81288	81289	82190	
Client Identification	A & D Composite	В В -В	C B-c	B-D	F & G Composite	Detection Limit
Parameters		*				
Naphthalene	ND	ND-	ND	ND	ND	50.
Acenaphthylene	1690.	110.	ND	ND	ND	80.
Fluorene Acenaphthene]*	2230.	ND -	ND	ND	ND	80.
Phenanthrene	1320.	ND -	ND	ND	ND	10.
Anthracene	520.	ND	ND	ND	ND	10.
Fluoranthene	2440.	ND	ND	ND	ND	25.
Pyrene	ND	ND	ND	ND	ND	30.
Benz(a)anthracene]* Chrysene	450.	ND	ND	ND	ND	15.
Benzo(b)fluoranthene	ND	ND .	ND	- ND .	ND	20.
Benzo(k)fluoranthene	1110.	ND	. ND	ND	205.	20.
Benzo(a)pyrene	120.	ND -	ND .	ND	ND	25.
Dibenz(a,h)anthracene	ND	ND	ND	ND	ND	80.
<pre>Indeno(1,2,3-cd)pyrene]* Benzo(ghi)perylene</pre>	ND	ND	ND	ND	ND	40.

^{*}Co-Elute - cannot separate.

[°]All values in ng/g (ppb) dry weight basis.

ND - Nothing Detected.

REPORT TO: Mr. Doug Hotchkiss

DATE RECEIVED: 10/8/84

DATE REPORTED: 12/7/84

AGREEMENT # P-03611

		- 7	3:	2		
Laboratory Sample No.	81291	81292	81293	81294	81295	
Client Identification	H 13-D	I 13-E	Ј 6-С	K 6-D	М 7-Е	Detection Limit
Parameters			-			
Naphthalene	105.	ND-	ND	ND	ND	50.
Acenaphthylene	160.	160.	ND	ND	ND	80.
Fluorene Acenaphthene	265.	210.	290.	215.	190.	80.
Phenanthrene	36.	14.	25.	28.	15.	10.
Anthracene	32.	17.	ND	ND	ND	10.
Fluoranthene	120-	ND	56.	39.	ND	25.
Pyrene	ND	ND	ND	ND	ND	30.
Benz(a)anthracene * Chrysene	37.	ND	41.	ND	ND	15.
Benzo(b)fluoranthene	ND	ND	ND	- ND	ND	20.
Benzo(k)fluoranthene	75.	87.	65.	215.	ND	20.
Benzo(a)pyrene	ND	ND	41.	ND	ND	25.
Dibenz(a,h)anthracene	ND	ND	ND	ND	ND	80.
<pre>Indeno(1,2,3-cd)pyrene_{]*} Benzo(ghi)perylene</pre>	ND	ND	ND	ND	ND	 40.

^{*}Co-Elute - cannot separate.

[°]All values in ng/g (ppb) dry weight basis.

ND - Nothing Detected.

REPORT TO: Mr. Doug Hotchkiss

DATE RECEIVED: 10/8/84

DATE REPORTED: 12/7/84

AGREEMENT # P-03611

Laboratory Sample No.	81296	81297	81298	81299	81300		*
Client Identification	м ¹ 7-Е	N 7- F	0 9-c	P 9-D	S 12-C	=	Detection Limit
Parameters			-				
Naphthalene	ND	ND -	ND	ND	ND		50.
Acenaphthylene	540.	ND	ND	ND	ND		80.
Fluorene Acenaphthene	380.	200.	185.	ND	ND		80.
Phenanthrene	28.	14.	140.	ND	ND		10.
Anthracene	18.	ND	34.	ND	ND		10.
Fluoranthene	ND	ND.	35.	ND	ND		25.
Pyrene	ND	ND	ND	ND	ND		30.
Benz(a)anthracene]*	ND	ND	50.	ND	ND		15.
Benzo(b)fluoranthene	ND	- ND	ND	- ND	ND		20.
Benzo(k)fluoranthene	54.	67.	ND	. 57.	ND		20.
Benzo(a)pyrene	ND	ND	ND	ND	ND		25.
Dibenz(a,h)anthracene	ND	ND	ND	. ND	ND		80.
<pre>Indeno(1,2,3-cd)pyrene Benzo(ghi)perylene</pre>	ND	ND	ND	ND	ND	٠	40.

^{*}Co-Elute - cannot separate.

 $^{^{\}circ}$ All values in ng/g (ppb) dry weight basis.

ND - Nothing Detected.

DATE RECEIVED: 10/8/84

REPORT TO: Doug Hotchkiss

DATE REPORTED: 12/7/84

AGREEMENT # P-03611

	T-32	P-28	_
Laboratory Sample No.	81301	81302	
Client Identification	T & U Composite	. W А — В	Detection Limit
Parameters			
Napthalene	ND	180. 170.]	50.
Acenaphthylene	ND	$_{ m ND}^{ m ND}$]	80.
Fluorene Acenaphthene]*	205.	$_{\mathrm{ND}}^{\mathrm{ND}}$]	80.
~ Phenanthrene	ND	37. ₂₆ .]	10.
Anthracene	ND	²⁷ · ₂₃ ·]	10.
Fluoranthene	ND	490. _]	25.
Pyrene	ND	580. ₄₂₅ .]	30.
Benz(a)anthracene _{]*}	ND -	82: ₄₁ :]	15.
Benzo(b)fluoranthene	ND	46·]	20.
Benzo(k)fluoranthene	ND	ND]	20.
Benzo(a)pyrene	ND	35. ₂₅ .]	25.
Dibenz(a,h)anthracene	ND	ND]	80.
<pre>Ideno(1,2,3-cd)pyrene]* Benzo(ghi)perylene</pre>	ND	ND]	40.

^{*}Co-Elute - cannot separate.

 $^{^{\}circ}$ All values in ng/g (ppb) dry weight basis.

ND - Nothing detected.

am test inc.

4900 9TH AVENUE N.W., • SEATTLE, WASHINGTON 98107-3697 • 206/783-4700

CLIENT: Port of Seattle DATE RECEIVED: 10/8/84

REPORT TO: Mr. Doug Hotchkiss

DATE REPORTED: 12/7/84

AGREEMENT # P-03611

GC/MS BASE NEUTRAL FRACTION ANALYSIS OF SEDIMENTS

Laboratory Sample No. Client Identification

Compounds	Detection Limits (µg/gram)
Acenaphthene	5
Acenaphthylene	5
Anthracene	. 5
bis(2-chloroethoxy)methane	- 5
bis(2-chloroethyl)ether	10
bis(2-chloroisopropyl)ether	20
bis(2-ethylhexyl)phthalate	5
Benzidine	10
Benzo(a)anthracene	5
Benzo(a)pyrene	5
Benzo(b)fluoranthene	10
Benzo(ghi)perylene	20
Benzo(k)fluoranthene	5
Butyl Benzylphthalate	5
Chrysene	5
Di-n-butylphthalate	5
Di-n-octylphthalate	. 5
Dibenzo(ah)anthracene	20
Diethylphthalate	5
Dimethylphthalate	5
Fluoranthene	5
Fluorene	5

^{*}All samples (81286 - 81302) are below stated detection limits All results on a dry weight basis (µg/gram).

DATE RECEIVED: 10/8/84

REPORT TO: Doug Hotchkiss

DATE REPORTED: 12/7/84

AGREEMENT # P-03611

GC/MS BASE NEUTRAL FRACTION ANALYSIS OF SEDIMENTS

Laboratory Sample No.

*

Client Identification

Compounds	Detection Limits	(ug/gram)
		(-8/ 8/
Hexachlorobenzene	5	
Hexachlorobutadiene	10	· ·
Hexachlorocyclopentadiene	10	
Hexachloroethane	. 15	*
Indeno(1,2,3-cd)pyrene	20	
Isophorone	. 5	X
N-nitrosodi-n-propylamine	5	
N-nitrosodimethylamine	20	
N-nitrosodiphenylamine	. 5	
Naphthalene	5	
Nitrobenzene	. 10	
Phenanthrene	- 5	
Pyrene	5	
1,2,4-Trichlorobenzene	5	
1,2-Dichlorobenzene	5	
1,2-Diphenylhydrazine	5	
1,3-Dichlorobenzene	5	
1,4-Dichlorobenzene	5	
2,4-Dinitrotoluene	15	
2,6-Dinitrotoluene	15	
2-chloronaphthalene	. 5	
3,3'-Dichlorobenzidine	5	
4-Bromophenyl phenyl ether	15	
4-chlorophenyl phenyl ether	5	

^{*}All samples (81286 - 81302) are below stated detection limits. All results on a dry weight basis ($\mu g/gram$).

4900 9TH AVENUE N.W., • SEATTLE, WASHINGTON 98107-3697 • 206/783-4700

CLIENT: Port of Seattle

DATE RECEIVED: 10/8/84

REPORT TO: Mr. Doug Hotchkiss

DATE REPORTED: 12/7/84

AGREEMENT # P-03611

PRIORITY POLLUTANT SEDIMENT ANALYSIS - ACID FRACTION

Laboratory Sample Number

arameter Detection Limit (µg/gram)	
_	
2-Chlorophenol	0.1
2,4-Dichlorophenol	0.1
2,4-Dimethylphenol	0.1
4,6-Dinitro-o-cresol	0.2
2,4-Dinitrophenol	0.5
2-Nitrophenol	0.2
4-Nitrophenol	0.2
P-Chloro-m-cresol	0.1
Pentachlorophenol	0.2
Phenol	0.1
2,4,6-Trichlorophenol	0.1

 $[\]star$ All samples (81286 - 81302) are below the above listed detection limits.

^{*}Results on a dry weight basis.

4900 9TH AVENUE N.W., • SEATTLE, WASHINGTON 98107-3697 • 206/783-4700

CLIENT: Port of Seattle

REPORT TO: Mr. Doug Hotchkiss

DATE RECEIVED: 10/8/84

DATE REPORTED: 12/7/84

PURGEABLE COMPOUND ANALYSIS

AGREEMENT # P-03611 T-32 P-28 Laboratory Sample No. 81286 81287 81288 81289 81290 81291 81292 81293 Detection A & D Client Identification F & G B C E Ι J Limit Composite Composite B&C-A B-B B-C B-D 10-D+E 6-6 13-E 13-0 Compounds Benzene ND ND ND ND ND ND ND ND .1 Bromodichloromethane ND ND ND ND ND ND ND ND . 1 Bromoform ND ND ND ND ND ND ND ND .1 Bromomethane ND ND ND ND ND ND ND ND 1.0 Carbon Tetrachloride ND ND ND ND ND ND ND ND .1 Chlorobenzene ND ND ND ND ND ND ND ND .1 Chloroethane ND ND ND ND ND ND ND ND 1.0 2-Chloroethylvinyl Ether ND ND ND ND ND ND ND ND. .5 Chloroform ND ND ND ND ND ND ND ND .1 Chloromethane ND ND ND ND ND ND ND ND 1.0 Dichlorobromomethane ND ND ND ND ND ND ND ND .1 Dichlorodifluoromethane ND ND ND ND ND ND ND ND .5 1,1-Dichloroethane ND ND ND ND ND ND ND .1 1,2-Dichloroethane ND ND ND ND ND ND ND ND .1 1,1-Dichloroethylene ND ND ND ND ND ND ND. ND .1 Trans-1, 2-Dichloroethylene ND ND ND ND ND ND ND ND .1 1,2-Dichloropropane ND ND-ND ND ND ND ND ND . 1 Cis-1, 3-Dichloropropene ND ND ND NĐ ND ND ND ND . 1 Trans-1,3-Dichloropropene ND ND ND ND ND ND ND ND .1 1,2-Dichloropropylene ND ND ND ND ND ND ND ND .5 Ethylbenzene ND ND ND ND ND ND ND ND .1 Methylene Chloride ND ND ND ND ND ND ND ND .1 1,1,2,2-Tetrachloroethane ND ND ND ND ND ND ND ND .1 1,1,2,2-Tetrachloroethene ND ND ND ND ND ND ND .1 ND Toluene ND ND ND ND ND ND ND ND .1 1,1,1-Trichloroethane ND ND ND_ TRACE ND TRACE .1 TRACE ND 1,1,2-Trichloroethane ND ND ND ND ND ND ND ND . 1 Trichloroethylene ND ND ND ND ND ND ND ND .1 Trichlorofluoromethane ND ND ND ND ND ND ND ND . 1

ND

ND

ND

ND

ND

ND

ND

ND

1.0

Vinly Chloride

^{*}All values in (µg/gram) dry weight basis.

4900 9TH AVENUE N.W., • SEATTLE, WASHINGTON 98107-3697 • 206/783-4700

CLIENT: Port of Seattle

REPORT TO: Mr. Doug Hotchkiss

DATE RECEIVED: 10/8/84

DATE REPORTED: 12/7/84
AGREEMENT # P-03611

PURGEABLE COMPOUND ANALYSIS

	T-32								
Laboratory Sample No.	81294	81295	81296	81297	81298	81299	81300		Detection
Client Identification	K	M	$\dot{\rm M}^1$	N	0	P	Ć.	T & U mposite	Limit
	6-D	7-E	7-E	7-F	9-6	9-0	12-6	12-D+E	
Compounds									
Benzene	ND	ND	ND	ND	ND	ND	ND	ND -	.1
Bromodichloromethane	ND	ND	ND	ND	ND	ND	ND	ND	.1
Bromoform	ND	ND	¬ND	ND	ND	ND	ND	ND	.1
Bromomethane	ND	ND ·	ND	ND	ND	ND	ND	ND	1.0
Carbon Tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND .	.1
Chlorobenzene	ND	ND	ND	ND	ND.	ND	ND	ND -	.1
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	1.0
2-Chloroethylvinyl Ether	ND	ND	ND	ND	ND	ND	ND	ND	.5
Chloroform	ND	ND	ND	ND	ND	ND	ND T	RACE	.1
Chloromethane	ND	ND	ND	ND	ND	ND	ND	ND	1.0
Dichlorobromomethane	ND	ND	ND	ND	ND	ND	ND	ND	.1
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	.5
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	.1
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	.1
1,1-Dichloroethylene	ND	ND	ND	ND	ND	ND ·	ND.	ND	.1
Trans-1,2-Dichloroethylene	ND	ND	ND	. ND	ND	ND	ND .	ND	.1
1,2-Dichloropropane	ND	ND .	ND	ND	ND	ND	ND	ND	.1
Cis-1,3-Dichloropropene	ŇD	ND	ND	ND	ND .	-ND	ND	ND	.1
Trans-1,3-Dichloropropene	ND	ND .	ND	ND	ND -	ND	ND	ND	.1
1,2-Dichloropropylene	ND	ND	ND	ND	ND	ND	ND	ND	.5
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND .	.1 .
Methylene Chloride	ND	ND	ND	ND	ND	ND	ND	ND	.1
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	- ND	ND	.1
1,1,2,2-Tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	.1
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	.1
1,1,1-Trichloroethane	TRACE	ND	ND	ND	TRACE	ND	ND	ND	.1
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	.1
Trichloroethylene	ND	ND	ND	ND	ND	ND	ND	ND	.1
Trichlorofluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	.1
Vinly Chloride	ND	ND	ND	ND	ND	ND	ND	ND	1.0

[&]quot;All values in (µg/gram) dry weight basis.

4900 9TH AVENUE N.W., • SEATTLE, WASHINGTON 98107-3697 • 206/783-4700.

CLIENT: Port of Seattle

REPORT TO: Mr. Doug Hotchkiss

DATE RECEIVED: 10/8/84

DATE REPORTED: 12/7/84
AGREEMENT # P-03611

PURGEABLE COMPOUND ANALYSIS

	EDDE COLLE	THE THE PARTY OF T	
	D-38	3	
Laboratory Sample No.	81302	* *	Detection
Client Identification	ω	*	Limit
	A - B		
Compounds	•		
Benzene	ND	·	.1
Bromodichloromethane	ND		.1
Bromoform	ND	-	.1
Bromomethane	ND		1.0
Carbon Tetrachloride	ND	•	.1
Chlorobenzene	ND		.1
Chloroethane	ND		1.0
2-Chloroethylvinyl Ether	ND		5
Chloroform	ND		.1
Chloromethane .	ND		1.0
Dichlorobromomethane	ND		.1
Dichlorodifluoromethane	ND		.5
1,1-Dichloroethane	ND		.1
1,2-Dichloroethane	ND		.1
1,1-Dichloroethylene	ND		.1
Trans-1,2-Dichloroethylene	ND		.1
1,2-Dichloropropane	ND		.1
Cis-1, 3-Dichloropropene	ND		.1
Trans-1,3-Dichloropropene	ND		.1
1,2-Dichloropropylene	ND -		.5
Ethylbenzene	ND		.1
Methylene Chloride	ND		.1
1,1,2,2-Tetrachloroethane	ND.		.1
1,1,2,2-Tetrachloroethene	ND		.1
Toluene	ND		.1
1,1,1-Trichloroethane	ND		.1
1,1,2-Trichloroethane	ND		.1
Trichloroethylene	ND		.1
Trichlorofluoromethane	ND		.1
Vinly Chloride	ND		1.0
	-	•	

^{*}All values in (µg/gram) dry weight basis.

am test inc.

4900 9TH AVENUE N.W., • SEATTLE, WASHINGTON 98107-3697 • 206/783-4700

CLIENT: Port of Seattle

REPORT TO: Doug Hotchkiss

DATE RECEIVED: 10/8/84

DATE REPORTED: 12/7/84

				SEDIME P-28	NT GRAIN SIZE	ĩ	AGREE T-32	MENT # P-03611	
Labora	ory Sam	ple Number	81286	81287	81288	81289	81290	81291	
	Identif		A & D Composite Bac-A	В В-В	C B - C	. Е В - D	F & G Composite /o-D«E	Н 13- <i>D</i>	
Tyler Screen	Mesh mm	Mesh Inch			% RETENTION				
10	2.00	.0787	4.00	0.21	0.18	0.18	<0.09	3.86	
20	0.85	.0331	2.31	0.17	0.11	<0.09	0.11	0.91	
28	0.60	.0234	1.69	<0.08	<0.07	0.13	<0.09	1.47	
60	0.25	.0098	24.0	4.20	1.72	0.57	2.79	34.8	
150	0.11	.0041	23.6	27.0	14.6	9.45	32.7	35.2	
200	0.08	.0029	5.08	13.3	12.9	11.6	12.4	5.33	
PASS	<0.08	<.0029	39.2	55.1	70.4	77.9	51.8	18.5	

CLIENT: Port of Seattle		DATE RECEIVED: 10/8/84
REPORT TO: Doug Hotchkiss	SEDIMENT GRAIN SIZE	DATE REPORTED: 12/7/84 AGREEMENT# P-03611
Laboratory Sample Number	81292 81293 81294	Acceptable to represent the control of the control
Client Identification	13-E 6-C 6-D	M M ¹ N 7-E 7-E 7-F
Grain Size		
Tyler Mesh Mesh Screen mm Inch	% RET	TENTION
10 2.00 .0787	3.67 0.39 0.1	12 0.35 0.27 0.16
20 0.85 .0331	1.08 0.42 0.2	
28 0.60 .0234	0.68 0.85 0.6	59 1.45 0.98 0.24
60 0.25 .0098	32.3 37.6 44.5	30.5 33.0 24.1
150 0.11 .0041	39.1 40.2 40.6	5 45.0 45.4 45.6
200 0.08 .0029	4.83 4.24 3.5	55 6.56 5.97 6.57
PASS <0.08 <.0029	18.4 16.3 10.3	3 16.0 14.0 23.2

CLIENT: Port of Seattle

REPORT TO: Doug Hotchkiss

DATE RECEIVED: 10/8/84

DATE REPORTED: 12/7/84

SEDIMENT GRAIN SIZE

AGREEMENT # P-03611

,				T-3:	ξ	6	P-28
Labora	tory Sam	ple Number	81298	81299	81300	81301	81302
	Identif rain Siz		0 9- C	P 9-D	S 12-C	T & U Composite 12-D+E	W A-B
Tyler Screen	Mesh mm	Mesh Inch	* * . * . * .	%	RETENTION		
10	2.00	.0787	0.48	0.35	0.16	0.28	5.00
20	0.85	.0331	0.68	0.19	0.36	0.44	1.30
28	0.60	.0234	1.88	0.27	1.70	0.60	0.98
60	0.25	.0098	58.5	26.3	60.6	24.0	26.4
150	0.11	.0041	30.5	50.3	29.4	20.9	50.3
200	0.08	.0029	2.00	5.85	1.54	8.46	4.88
PASS	<0.08	<.0029	 5.93	16.8	6.24	45.3	11.2

IV. FIRST SERIES (QA/QC)

Laucks Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206)767-5060

Chemistry Microbiology, and Technical Services

PAGE NO.

17

Port of Seattle

LABORATORY NO.

85194

APPENDIX A

Surrogate Recovery Quality Control Report

Listed below are surrogate (chemically similar) compounds utilized in the analysis of organic compounds. The surrogates are added to every sample prior to analysis and extraction to monitor for matrix effects, purging efficiency and sample processing errors. The control limits represent the 95% confidence interval established in our laboratory through repetitive analysis of these sample types.

Priority Pollutant Analyses:

parts per million (mg/kg)

Sample No.	Surrogate Compound	Spike Level	Spike Found	% Recovery	Control Limit
7	2-Fluorophenol	33.05	33.36	91.9	26-116
7	2-Fluoroaniline	34.09	17.42	51.1	*
. 7	d5-Pheno1	32.28	18.04	55.9	10-104
7	d5-Nitrobenzene	35.89	29.39	81.9	19-115
7	2-Fluorobiphenyl	32.28	33.99	105.3	17-125
7	2,4,6-Tribromophenol	32.28	29.79	92.3	32-124
15	2-Fluorophenol	38.47	27.35	71.1	26-116
15	2-Fluoroaniline	39.67	5.91	14.9	*
15	d5-Pheno1	37.57	17.73	47.2	10-104
15	d5-Nitrobenzene	41.77	32.08	76.8	19-115
15	2-Fluorobiphenyl	37.57	30.24	80.5	17-125
15	2,4,6-Tribromophenol	37.57	27.20	72.4	32-124
16	2-Fluorophenol	31.47	34.49	109.6	26-116
16	2-Fluoroaniline	32.45	23.59	72.7	20-116 *
16	d5-Pheno1	30.73	29.10	94.7	10-104
16	d5-Nitrobenzene	34.17	31.71	92.8	
16	2-Fluorobiphenyl	30.73	34.26	111.5	19-115
16	2,4,6-Tribromophenol	30.73	35.40	115.2	17-125 32-124

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

18

LABORATORY NO.

85194

Port of Seattle

parts per million (mg/kg)

Chemistry Microbiology, and Technical Services

PAGE NO.

19

Port of Seattle

LABORATORY NO.

parts per million (mg/kg)

Sample No.	Surrogate Compound	Spike Level	Spike Found	% Recovery	Control Limit
42	2-Fluorophenol	25.90	25.28	97.6	26-116
42	2-Fluoroaniline	26.71	14.96	56.0	*
42	d5-Pheno1	24.29	17.23	68.1	10-104
42	d5-Nitrobenzene	28.12	31.91	113.5	19-115
42	2-Fluorobiphenyl	25.29	28.66	113.3	17-125
42	2,4,6-Tribromophenol	25.29	25.59	101.2	32-124
36 Spike	2-Fluorophenol	22.81	26.95	118.1	26-116
36 Spike	2-Fluoroaniline	23.52	12.48	53.1	*
36 Spike	d5-Pheno1	22.27	19.66	88.3	10-104
36 Spike	d5-Nitrobenzene	24.77	23.68	95.6	19-115
36 Spike	2-Fluorobiphenyl	22.27	21.79	97.9	17-125
36 Spike	2,4,6-Tribromophenol	22.27	18.41	82.7	32-124
36 Dup.	2-Fluorophenol	22.81	25.82	113.2	26-116
36 Dup.	2-Fluoroaniline	23.52	11.73	49.9	*
36 Dup.	d5-Pheno1	22.27	20.84	93.6	10-104
36 Dup.	d5-Nitrobenzene	24.77	25.63	103.5	19-115
36 Dup.	2-Fluorobiphenyl	22.27	24.41	96.1	17-125
36 Dup.	2,4,6-Tribromophenol	22.27	19.54	87.7	32-124
Blank	2-Fluorophenol	17.07	20.71	121.3_	26-116
Blank	2-Fluoroaniline	26.71	30.27	1.13.3	*
Blank	d5-Pheno1	16.67	15.56	93.3	10-104
Blank	d5-Nitrobenzene	18.53	19.69	106.3	19-115
Blank	2-Fluorobiphenyl	16.67	17.76	106.5	17-125
Blank	2,4,6-Tribromophenol	16.67	16.78	100.7	32-124

Certificate

Chemistry, Microbiology, and Technical Services

PAGE NO.

20

Port of Seattle

LABORATORY NO.

85194

parts per billion (ug/kg)

Sample No.	Surrogate Compound	Spike Level	Spike Found	% Recovery	Control Limit
7	Dibutylchlorendate	333.	380.	114.	41-121
15	Dibutylchlorendate	333.	686.	206.	41-121
16	Dibutylchlorendate	333.	446.	134.	41-121
22	Dibutylchlorendate	333.	583.	175.	41-121
23	Dibutylchlorendate	333.	406.	122.	41-121
28	Dibutylchlorendate	333.	390.	117.	41-121
29	Dibutylchlorendate	333.	500.	150.	41-121
36	Dibutylchlorendate	333.	669.	201.	41-121
42	Dibutylchlorendate	333.	460.	138.	41-121
Blank	Dibutylchlorendate	333.	483.	145.	41-121
36 Spike I	Dibutylchlorendate	333.	292.	87.8	41-121
36 Spike II	Dibutylchlorendate	333.	380.	114.	41-121

E.P. Toxicity Analyses:

parts per million (mg/L)

Sample No.	Surrogate Compound	Spike Level	Spike Found	% Recovery	Control Limit
7	Isodrin	0.00200	0.00172	86.0	43-118
15	Isodrin	0.00200	0.00145	72.8	43-118
16	Isodrin	0.00200	0.00146	73.0	43-118
22	Isodrin	0.00200	0.00189	94.3	43-118
23	Isodrin	0.00200	0.00185	92.3	43-118
_28	Isodrin	0.00200	0.00193	96.6	43-118
29	Isodrin	0.00200	0.00210	105.	43-118
36	Isodrin	0.00200	0.00209	104.	43-118
42	Isodrin	0.00200	0.00183	91.7	43-118
Blank	Isodrin	0.00200	0.00104	52.0	43-118
Spike I	Isodrin	0.00200	0.00177	88.4	43-118
Spike II	Isodrin	0.00200	0.00205	102.	43-118

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

21

LABORATORY NO.

85194

Port of Seattle

parts per million (mg/L)

7	Sample No.	Surrogate Compound	Spike Level	Spike Found	% Recovery	Control Limit
	16 22 23 28 29 36 42 Blank 29 Spike I	2,4,5-T	0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400	.0145 .0203 .0143 .0163 .0215 .0146 .0184 .0232 .0292 .0428	36.3 50.8 35.5 40.7 53.7 36.6 45.9 58.0 73.0	* * * * * * * * *

APPENDIX B

Replicate Quality Control Report

Sample #	Analyte	Replicate	Replic	ate 2	Relat	ive Er	ror,	%
PRIORITY	POLLUTANT ANAL	YSES						
		-	*	- 6				
42 42	Total Solid Volatile So	ls 68.2		.9		1.9		

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

22

LABORATORY NO.

85194

Port of Seattle

parts per million (mg/kg)

Sample #	Analyte	Replicate 1	Replicate 2	Relative Error, %
42 42 42 42 42 42 42 42 42 42 7 Spike 22 42	Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver Thallium Zinc Phenol Cyanide Cyanide	L/0.5 15. 0.14 1.5 30. 47. 62. 0.66 30. L/0.5 0.5 L/0.5 150. 0.8 L/0.5	L/0.5 10. 0.16 1.6 31. 44. 50. 0.68 27. L/0.5 0.6 L/0.5 140. 0.7 L/0.5	0. 33. 12. 6.2 3.2 6.4 19. 2.9 10. 0. (0.1) 0. 6.7 12. 0. 0.
RIII K SAMDI I	E ANALYCES			

BULK SAMPLE ANALYSES

			4.
Sand Silt	28.8 52.8	20.0 59.6	30. 11.
Clay Total Organic Carbon	18.4	20.4	10.
Oil & Grease Sulfide	0.21	0.28 0.006	25. (.001)
	Silt Clay Total Organic Carbon Oil & Grease	Silt 52.8 Clay 18.4 Total Organic 2.2 Carbon Oil & Grease 0.21	Silt 52.8 59.6 Clay 18.4 20.4 Total Organic 2.2 2.2 Carbon Oil & Grease 0.21 0.28

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

23

LABORATORY NO.

85194

Port of Seattle

parts per million (mg/L) Sample # Analyte Replicate 1 Replicate 2 Relative Error, % E.P. TOXICITY ANALYSES 36 Cadmium L/0.02 L/0.02 0. 36 Chromium L/0.1 L/0.1 36 0. Lead L/0.2 L/0.2 0. 36 -Silver L/0.1 L/0.1 36 Barium L/0.5 L/0.5 0. 36 Mercury L/0.005 L/0.005 36 Arsenic L/0.005 L/0.005 0. 36 Selenium

L/0.005

APPENDIX C

L/0.005

Spike Quality Control Report

	* *		mg/L		والع الع	
Sample #	Analyte	Sample Found	Spike Level	Spike Found	% Recovery	Control Limit
PRIORITY	POLLUTANT ANA	ALYSES		47 28		
42 42 42 42 42 42 42	Antimony Arsenic Beryllium Cadmium Chromium Copper Lead	L/0.5 10. 0.14 1.5 30. 47. 62.	2.5 25. 0.25 0.5 100. 100.	1.8 35. 0.27 1.9 130. 150.	72. 100. 52. 80. 100.	* * * * *

Chemistry. Microbiology. and Technical Services

PAGE NO.

24

Port of Seattle

LABORATORY NO.

85194

Sample #	Analyte	Sample Found	mg/L Spike Level	Spike Found	% Recovery	Control Limit
42 ** 42 42 42 42 7 7 7 36	Mercury Nickel Selenium Silver Thallium Zinc Phenol Phenol Cyanide	0.66 19. 0.4 0.5 L/0.5 150. L/0.1 L/0.1	0.25 10. 2.5 1.0 2.5 100. 0.8 0.8 3.3	0.91 29. 3.1 1.6 1.9 240. 0.7 0.8 3.9	100. 100. 104. 110. 76. 90. 88. 100.	* * * * * * * *
*			ug/L			
36 Spk. 11 36 Spk. 11	Heptachlor Aldrin Dieldrin	L/5. L/5. L/5. L/10. L/10. L/5. L/5. L/5. L/5.	333. 333. 333. 333. 333. 333. 333. 333	350. 376. 380. 376. 360. 380. 523. 529. 519. 513. 523. 423.	105. 113. 114. 113. 110. 114. 157. 159. 156. 154. 157. 127.	87-107 43-125 43-109 56-122 89-101 82-102 87-107 43-125 43-109 56-122 89-101 82-102

E.P. TOXICITY ANALYSES

parts	per	mi	11 i	on	(mg/L)
-------	-----	----	------	----	--------

36 36 36	Cadmium Chromium Lead	L/0.02 L/0.1 L/0.2	1.0	0.98	98.	*
,	Leau	L/U.2	5.0	5.0	100.	*

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

25

Port of Seattle

LABORATORY NO.

85194

		mg/L	* 3 .		
	Sample	Spike	Spike	%	Control
Sample # Analyte	Found	Level	Found	Recovery	Limit
36 Silver	L/0.1	1.0	0.9	90.	*
36 Barium	L/0.5	10.0	11.1	110.	* *
36 Mercury	L/0.005	0.010	0.011	110.	*
36 Arsenic	L/0.005	0.25	0.22	88.	*
36 Selenium	L/0.005	0.25	0.28	112.	*
42 Spk. I Endrin	L/0.0002	0.004	0.00106	46.4	89-101
42 Spk. II Endrin	L/0.0002	0.004	0.00162	40.4	89-101
29 Spk. I 2,4-D	L/0.005	0.016	0.0110	68.8	*
29 Spk. I 2,4,5-TP	L/0.005	L/0.016	L/0.0110	68.8	*
29 Spk. II 2,4-D	L/0.005	0.0160	0.0123	76.6	*
29 Spk. II 2,4,5-TP	L/0.002	0.0080	0.00623	77.9	*
BULK SAMPLE ANALYSES					
42 Oil & Grea	ase 0.21	1.22	1.38	96.	*

The control limits are a statistically derived measure of the level of confidence in the measurement. These control limits determine the range within which the analytical value will fall 95% of the time.

^{*} No control limits yet established.

^{**} POS sample was spiked too low for observable recovery. Another sample which was run concurrently was spiked appropriately and the results reported here.

^{() =} absolute

Chemistry Microbiology, and Technical Services

PAGE NO.

26

Port of Seattle

LABORATORY NO.

85194

APPENDIX D

Base Acid Neutral Spike Recoveries

Compounds	MS % Recovery	DS % Recovery	% Deviation
1,2,4-Trichlorobenzene	98.5	101.5	-2.9
Acenaphthene	103.1	98.9	4.1
2,4-Dinitrotoluene	75.6	69.1	9.0
Di-n-butylphthalate	109.8	91.2	18.4
Pyrene	101.1	89.7	11.9
N-initroso-di-N-propylamine	110.3	113.6	-3.2
1,4-Dichlorobenzene	86.8	89.6	-3.2
Pentachlorophenol	26.5	42.9	-47.2
Phenol	99.3	100.8	-1.5
2-Chlorophenol	100.4	102.0	-1.6
p-Chloro-m-cresol	69.3	68.1	1.7
4-NITROPHENOL	90.1	90.4	-0.3

Chemistry Microbiology, and Technical Services

PAGE NO. 27

Port of Seattle

LABORATORY NO. 85194

APPENDIX E

Comments on Limits of Detection

The laboratory makes every effort to meet the lower limits of detection (LLDs) requested. In some cases, LLDs are elevated due to interferences.

The primary cause of elevated LLDs is sample matrix. Detector response to sample matrix may be determined to be interference, rather than, in this case, pesticides through analytical interpretation. This interpretation will take into account lack of confirmation by a second chromatogram, poor peak shape, interference from a multiple component chemical (i.e., PCBs), etc.

The final result of the interference is that the pesticide cannot be "seen" down to the level which would be achieveable without that interference.

Attached are copies of chromatograms for both a mixed pesticide standard and a PCB Arochlor 1260 standard. From reviewing both chromatograms, it can be seen that presence of PCBs in the sample would make it impossible to "read" the presence of pesticides below the level reported to you.

SECOND SERIES (QA/QC)

Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206)

(206)767-5060

Chemistry. Microbiology. and Technical Services

PAGE NO.

10

LABORATORY NO. 86772

Port of Seattle

APPENDIX A

Replicate Quality Control Report

Inorganics

Sample	Analyte	Replicate 1	Replicate 2	Relative Error
			%	
· A	Total Solids	77.8	77.6	0.2
		%, dry	basis	
A 8 9 8 8 8	Volatile Solids Total Organic Carbon Oil & Grease Sulfide as S Sand Silt Clay	4.1 0.98 0.33 10.8 70.4 18.8	1.3 3.8 0.81 0.19 9.4 67.7 22.9	7.3 17. 42. 13. 3.8 18.

Certificate

Chemistry. Microbiology. and Technical Services

PAGE NO.

11

Port of Seattle

LABORATORY NO. 86772

<u>Sample</u>	Analyte	Replicate 1	Replicate 2	Relative Error
	¥ A	parts per million	(mg/kg), dry basis	2. *
C D 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Cyanide Mercury Nickel Zinc Chromium Arsenic Copper Lead Cadmium Thallium Selenium Phenol Beryllium Antimony Silver	L/0.10 0.2 92. 970. 92. 15. 150. 190. 4.8 L/1. 0.5 L/0.15 0.50 L/1. 1.9	L/0.10 0.2 88. 1000. 92. 15. 160. 220. 5.4 L/1. 0.5 L/0.15 0.44 L/1. 1.0	0. 0. 4.3 3.0 0. 0. 6.2 14. 11. (0.) (0.) 0. 12. (0.) 47.

() indicates absolute error L/ indicates "less than"

Certificate

Chemistry. Microbiology, and Technical Services

PAGE NO.

12

Port of Seattle

LABORATORY NO. 86772

APPENDIX B

Spike Quality Control Report

Inorganics

Sa	mple	<u>Analyte</u>	Sample Found	Spike Level	Spike Found	% Recovery
	-			%, dry basi	S	
Α		Oil & Grease	0.07	1.24	1.32	101.
			parts per mi	llion (mg/k	g), dry basis	
CC9999999B95999		Mercury Cyanide Cyanide Nickel Zinc Chromium Arsenic Copper Lead Cadmium Thallium Selinium Phenol Beryllium Antimony Silver	0.2 L/0.10 0.24 92. 970. 92. 15. 150. 190. 4.8 L/1. 0.5 L/0.15 0.50 L/1. 1.9	0.3 0.98 1.5 100. 250. 100. 20. 200. 110. 11. 2.5 2.0 0.85 0.50 10. 0.96	0.5 0.31 1.4 192 1230 196 33. 350 310 15.2 5.4 2.3 0.78 1.00 3.6 2.7	100. 32. 77. 100. 104. 104. 104. 90. 109. 94. 216. 90. 92. 100. 36. 83.

L/ indicates "less than"

Certificate

Chemistry, Microbiology, and Technical Services

PAGE NO.

13

Port of Seattle

LABORATORY NO. 86772

APPENDIX C

Surrogate Recovery Quality Control Report

Listed below are surrogate (chemically similar) compounds utilized in the analysis of volatile and organic compounds. The surrogates are added to every sample prior to extraction and analysis to monitor for matrix effects, purging efficiency, and sample processing errors. The control limits represent the 95% confidence interval established in our laboratory through repetitive analysis of these sample types. In certain cases, we will have accumulated insufficient data to have established control limits.

	Sample #	Surrogate Compound	Spike Level	Spike Found	% Recovery	Control Limits
			parts per mi	llion (mg/kg)		
	A	d4-1,2-Dichloroethane	0.735	0.761	103.6	50-160
	A	d8-Toluene	0.735	0.696	94.7	50-160
	A	Bromofluorobenzene	0.735	0.821	111.7	50-160
	B	d4-1,2-Dichloroethane	0.698	0.553	79.2	50-160
	B	d8-Toluene	0.698	0.685	98.2	50-160
	B	Bromofluorobenzene	0.698	0.808	115.8	50-160
	C	d4-1,2-Dichloroethane	0.676	0.633	93.6	50-160
	C	d8-Toluene	0.676	0.677	100.1	50-160
	C	Bromofluorobenzene	0.676	0.779	115.2	50-160
	Blank	d4-1,2-Dichloroethane	0.050	0.0496	99.3	50-160
	Blank	d8-Toluene	0.050	0.0501	100.1	50-160
	Blank	Bromofluorobenzene	-0.050	0.0550	109.9	50-160
	Spike	d4-1,2-Dichloroethane	0.370	0.382	103.3	50-160
	Spike	d8-Toluene	0.370	0.355	95.9	50-160
	Spike	Bromofluorobenzene	- 0.370	0.391	105.8	50-160
S.	Dupe	d4-1,2-Dichloroethane	0.368	0.370	100.6	50-160
	Dupe	d8-Toluene	0.368	0.345	93.8	50-160
	Dupe	Bromofluorobenzene	0.368	0.396	107.5	50-160

Certificate

Chemistry. Microbiology. and Technical Services

PAGE NO. 1

Port of Seattle

LABORATORY NO. 86772

					00772
Sample #	Surrogate Compound	Spike Level	Spike Found	% Recovery	Control Limits
		parts per	million (mg/kg)	*	
5 5 5	d4-1,2-Dichloroethane d8-Toluene Bromofluorobenzene	0.372 0.372 0.372	0.360 0.368 0.409	96.7 98.9 110.0	50-160 50-160 50-160
8 8 8	d4-1,2-Dichloroethane d8-Toluene Bromofluorobenzene	0.865 0.865 0.865	0.870 0.886 0.976	100.6 102.4 112.8	50-160 50-160 50-160
9 9 9	d4-1,2-Dichloroethane d8-Toluene Bromofluorobenzene	0.700 0.700 0.700	0.734 0.648 0.768	104.8 92.6 109.7	50-160 50-160 50-160
		parts per	billion (ug/kg)		
A A A A A A	2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl	4096. 4224. 4000. 4000. 4224. 4000. 4000.	3328. 1042. 2645. 2552. 2915. 3188. 1496. 2920.	81.2 24.7 66.1 63.8 69.0 79.7 37.4 73.0	24-133 20-122 20-140 20-140 10-114 20-150
B B B B B B	2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl	4096. 4224. 4000. 4000. 4224. 4000. 4000.	3002. 1049. 2456. 2616. 2581. 3292. 2512. 3468.	73.3 24.8 61.4 65.4 61.1 82.3 62.8 86.7	24-133 20-122 20-140 20-140 10-114 20-150

Certificate

Chemistry. Microbiology, and Technical Services

PAGE NO. 15

Port of Seattle

LABORATORY NO. 86772

Sample #	Surrogate Compound	Spike Level	Spike Found	% Recovery	Control Limits
		parts per b	oillion (ug/kg)		
C C C C C C	2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl	4096. 4224. 4000. 4000. 4224. 4000. 4000.	1896. 966. 1547. 1648. 1748. 2376. 1996.	46.3 22.8 38.7 41.2 41.4 59.4 49.9 43.2	24-133 20-122 20-140 20-140 10-114 20-150
5 5 5 5 5 5 5 5 5	2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl	4096. 4224. 4000. 4000. 4224. 4000. 4000.	3274. 2141. 2748. 2700. 3070. 3416. 2720. 2864.	79.9 50.7 68.7 67.5 72.7 85.4 68.0 71.6	24-133 20-122 20-140 20-140 10-114 20-150
8 8 8 8 8 8	2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl	4096. 4224. 4000. 4000. 4224. 4000. 4000.	2776. 1510. 2296. 2708. 2537. 3036. 2856. 2600.	67.8 35.7 57.4 67.7 60.1 75.9 71.4 65.0	24-133 20-122 20-140 20-140 10-114 20-150
9 9 9 9 9 9	2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl	4096. 4224. 4000. 4000. 4224. 4000. 4000.	3338. 1624. 2536. 2664. 2959. 3624. 3032. 3812.	81.5 38.5 63.4 66.6 70.1 90.6 75.8 95.3	24-133 20-122 20-140 20-140 10-114 20-150

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

16

Port of Seattle

LABORATORY NO. 86772

Sample #	Surrogate Compound	Spike Level	Spike <u>Found</u> illion (ug/kg)	% Recovery	Control Limits
Spike Spike Spike Spike Spike Spike Spike Spike Dupe Dupe Dupe Dupe Dupe Dupe Dupe Blank Blank Blank Blank Blank Blank Blank	2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl 2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl 2-Fluorophenol 2-Fluorophenol 2-Fluorophenol 2-Fluorophenol 2-Fluorophenol 2-Fluorophenol 2-Fluorophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl	4096. 4224. 4000.	3242. 1710. 3156. 2776. 3105. 3208. 2752. 2824. 3475. 1682. 3173. 2812. 3252. 3383. 2945. 2952. 2858. 2601. 2440. 2229. 2628. 2892. 2211. 2825.	79.2 40.5 78.9 69.4 73.5 80.2 68.8 70.6 84.8 39.3 70.3 77.0 84.6 73.8 69.8 61.6 61.0 55.7 62.2 72.3 55.3 70.6	24-133 20-122 20-140 20-140 10-114 20-150 24-133 20-140 20-140 10-114 20-150 24-133 20-122 20-140 20-140 10-114 20-150
8 9 Blank 5 MS	Dibutylchlorendate	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	10.5 4.94 17.2 17.0 4.46 10.9 26.8 15.5 16.9	52.7 24.7 86.1 84.9 22.3 54.3 134. 77.7 84.7	20-150 20-150 20-150 20-150 20-150 20-150 20-150 20-150

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO 17

Port of Seattle

LABORATORY NO. 86772

APPENDIX D

Matrix Spike/Duplicate Spike

Quality Control Report

Organics

Reported below are the results of additional QC compounds utilized in the analysis of organic compounds. Compounds of interest are spiked into two additional sample aliquots prior to extraction and/or analysis to monitor for matrix effects, sample processing errors, and to calculate percent recoveries of compounds of interest and relative error in the analysis. The control limits represent the 95% confidence interval established in the laboratory through repetitive analysis of samples.

Compound	Conc Spike	Conc Samp	Conc MS	% REC	Conc MSD	% REC	RPD	RPD Limit	REC Limit
1,1-Dichloroethene Trichloroethene Chlorobenzene Toluene Benzene 1,2,4-Trichlorobenzene Acenaphthene 2,4-Dinitrotoluene Di-n-Butylphthalate Pyrene N-Nitrosodipropylamine 1,4-Dichlorobenzene Pentachlorophenol Phenol 2-Chlorophenol P-Chloro-m-cresol 4-Nitrophenol	125. 125. 125. 125. 125. 50. 50. 50. 50. 100. 100. 100. 100. 100.	0. 0. 0. 0. 0. 0. 0. 0. 0.	169. 142. 133. 142. 127. 37.1 44.4 34.0 42.0 8.91 45.5 37.4 44.3 70.7 65.2 46.2	135. 114. 106. 114. 102. 74.2 88.8 68.0 84.0 89.1 91.0 74.8 44.3 72.4 70.7 65.2 46.2	178. 155. 144. 148. 136. 38.1 44.5 33.8 44.2 8.41 45.3 36.6 46.2 71.5 70.5 61.2 40.6	142. 124. 115. 118. 109. 76.2 89.0 67.6 88.4 84.1 90.6 73.2 46.2 71.5 70.5 61.2 40.6	-4.9 -8.4 -7.6 -3.8 -6.8 -2.6 -0.2 0.6 -5.1 5.7 0.5 2.1 -4.2 1.3 0.3 6.3 12.9	22. 24. 21. 21. 23. 19. 47. 47. 36. 38. 27. 47. 35. 50.	59-172 62-137 60-133 59-139 66-142 38-107 31-137 28-89 29-135 35-142 41-126 28-104 17-109 26-90 25-102 26-103 11-114

Chemistry. Microbiology. and Technical Services

PAGE NO.

18

Port of Seattle

LABORATORY NO. 86772

Concentrations in the spike, matrix spike and matrix spike duplicate are shown in parts per billion (ug/kg).

Conc = Concentration

Samp = Sample

MS = Matrix Spike

MSD = Matrix Spike Duplicate

REC = Recovery

RPD = Relative Percent Difference

Chemistry. Microbiology, and Technical Services

PAGE NO.

19

Port of Seattle

LABORATORY NO. 86772

APPENDIX E

Spike Quality Control Report

Organics Pesticide Fraction

<u>Sample</u>	Analyte	Sample Found	Spike Level	Spike Found	% Recovery	Control Limit
		parts per	billion	(ug/kg)		
5 MS H 5 MS D 5 MS E 5 MS 4 5 MSD L 5 MSD A 5 MSD A 5 MSD D 5 MSD E	deptachlor Aldrin Dieldrin Indrin Indrin Indane Ideptachlor Idrin Idrin Indrin Indrin	L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1.	8.0 8.0 8.0 20.4 20. 20.0 8.0 8.0 8.0 20.4 20.0	2.66 2.08 4.72 7.4 7.24 14.3 2.12 1.66 8.87 8.61 8.99 16.8	33.3 26.0 58.9 36.6 36.2 71.3 26.5 20.7 111. 42.2 45.0 83.9	46-127* 35-130* 34-132 31-134 42-139* 23-134 46-127* 35-130* 34-132 31-134 42-139 46-127

^{*} Lower than normal recoveries may sometimes be attributable to sample matrix effects. Specifically, sulfur may cause supression of the compound signals. Sulfur was recognized as present in the sample residue matrix, and clean-up steps were taken to alleviate the problem.

Certificate

Chemistry. Microbiology, and Technical Services

CLIENT Port of Seattle P.O. Box 1209 Seattle, WA 98111 ATTN: Doug Hotchkiss

LABORATORY NO. 89964

June 28, 1985

PO #P-03849

SEDIMENT & WATER REPORT ON

SAMPLE IDENTIFICATION

TESTS PERFORMED AND RESULTS

Aliquot portions from two jars of archived sample, previously identified by laboratory number 85194-18 (HC-7-S1) were composited to create one sample.

Aliquot portions from four jars of archived sample, previously identified by laboratory numbers 85194-4 (HC-11-S1); 85194-27 (HC-10-S1); 85194-31 (HC-9-S1) and 85194-32 (HC-9-S2) were composited to create one sample, with each station equally weighted.

3) Aliquot portions from four jars of archived sample, previously identified by laboratory numbers 85194-9 (HC-13-S1: 2 jars) and 85194-39 (HC-14-S1: 2 jars) were composited to create one sample, with each station equally weighted.

The following were sampled by us on May 30, 1985 at Piers 90 & 91, from locations A-D shown on the enclosed map.

Spoil samples consisted of composites from 6-8 penetrations per site. Each penetration recovered 10"-12" of sediment.

Water samples were taken at an average depth of 7 meters below mllw.

SEDIMENT:

- Α
- 5)
- 6) B duplicate
- 7)
- 8) D

WATER:

- 9) A
- 10) В
- 11) B duplicate

Sellen in the sellen and the

- 12) C
- 13)

Certificate

Chemistry. Microbiology. and Technical Services

PAGE NO.

2

Port of Seattle

LABORATORY NO. 89964

SEDIMENT ANALYSES

Grain Size Analysis		%, dry basis					
	1	2	3	4			
Sand Silt Clay	9.8 67.3 22.9	21.5 59.4 19.1	19.7 59.7 20.6	28.2 62.8 9.0			
	5	6	7	8			
Sand Silt Clay	30.3 53.5 16.2	31.1 53.7 15.2	63.5 30.8 5.7	67.8 24.4 7.8			

Spoils Analysis

· HE SERVICE CHESTER SERVICE SERVICE

Samples were passed through a No. 10 sieve prior to analysis. Only material passing the sieve was analyzed. Percentages retained were as follow:

			2	3	4
% Retained	-	4.	2.	3.	3.
major description		wood	rocks	shell	shell
minor description		shell	wood	rocks	rocks
		5	6		- 8
% Retained		4.	3.	2.	6.
major description		rocks	rocks	wood	rocks
minor description		wood	wood	shell	shell

Certificate

Chemistry. Microbiology. and Technical Services

PAGE NO.

Port of Seattle

LABORATORY NO. 89964

	_1	2	3	4
	%.	, as receiv	ed basis	
Total Solids	48.3	53.5	56.3	64.2
		%, dry b	asis	
Total Organic Carbon Total Volatile Solids Oil & Grease Sulfide as S	7.1 10.5 1.8 0.13	7.0 6.5 0.67 0.097	4.8 6.4 0.58 0.025	1.8 2.9 0.19 0.082
	5	6	7	8
	<u>%,</u>	as receiv	ed basis	
Total Solids	48.9	49.1	61.0	70.7
		%, dry b	asis	
Total Organic Carbon Total Volatile Solids Oil & Grease Sulfide as S	4.4 7.2 0.99 0.096	4.1 6.8 0.91 0.070	2.4 3.8 0.45 0.17	1.8 2.7 0.16 0.010

Halogenated Hydrocarbons

new an interior desiration

Samples were then analyzed for Halogenated Hydrocarbons in accordance with Washington State Department of Ecology WAC 173-303 with results as follow:

	1	2	3	4
Halogenated Hydrocarbons# parts per million (mg/kg),				
as received basis	L/15.	L/15.	L/15.	L/15.

Certificate

Chemistry. Microbiology. and Technical Services

				PAGE NO. 4
Port of Seattle				LABORATORY NO. 89964
	5	6	7	8
Halogenated Hydrocarbons# parts per million (mg/kg),				
as received basis	L/15.	L/15.	L/15.	L/15.

[#] reported as the sum of the halogens bromide, chloride, fluoride and iodide.
A value of less than 100 mg/kg is classified as undesignated waste.

Gravimetric Polycyclic Aromatic Hydrocarbons

Samples were analyzed also for Gravimetric Polycyclic Aromatic Hydrocarbons in accordance with Washington State Department of Ecology WAC 173-303. The method requires analysis of the sample through successive stages until the result obtained is less than 1% by weight (as received basis) or until the fourth stage has been completed. Results are as shown below:

Stage:	% by w	eight, as n	received b	asis##
	1	22	3	4
1. Soxhlet Extraction	0.075	0.049	0.059	0.11
er.	5	6	7	8
1. Soxhlet Extraction	0.087	0.22	0.044	0.099

for 4,5,6 membered rings

Certificate

Chemistry. Microbiology. and Technical Services

PAGE NO. 5

Port of Seattle

LABORATORY NO. 89964

E.P. Toxicity

Samples were analyzed for E.P. Toxicity in accordance with <u>Test Methods for Evaluating Solid Wastes</u>, U.S.E.P.A., July, 1982. The extractions were performed under Method 1310; metals analyses were performed using the 7000 series of methods, and the pesticides and herbicides were performed using methods 8080 and 8150.

concentration, mg/L (parts per million)

	1	2	3	4	MCL
Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver	L/0.2	L/0.2	L/0.2	L/0.2	5.0
	0.3	0.3	0.3	0.3	100.
	0.03	0.01	0.02	L/0.01	1.0
	L/0.1	L/0.1	L/0.1	L/0.1	5.0
	L/0.2	L/0.2	L/0.2	L/0.2	5.0
	L/0.001	L/0.001	L/0.001	L/0.001	0.2
	L/0.2	L/0.2	L/0.2	L/0.2	1.0
	L/0.1	L/0.1	L/0.1	L/0.1	5.0
Endrin Methoxychlor Toxaphene 2,4-D 2,4,5-TP (silvex) Lindane	L/0.0001	L/0.0001	L/0.0001	L/0.0001	0.02
	L/0.001	L/0.001	L/0.001	L/0.001	10.0
	L/0.005	L/0.005	L/0.005	L/0.005	0.5
	L/0.001	L/0.001	L/0.001	1.	10.0
	L/0.001	L/0.001	L/0.001	L/0.001	1.0
	L/0.0001	L/0.0001	L/0.0001	L/0.0001	0.4
	5	6		8	MCL
Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver	L/0.2	L/0.2	L/0.2	L/0.2	5.0
	0.3	0.3	0.2	0.3	100.
	0.02	0.02	L/0.01	L/0.01	1.0
	L/0.1	L/0.1	L/0.1	L/0.1	5.0
	L/0.2	0.1	L/0.2	L/0.2	5.0
	L/0.001	L/0.001	L/0.001	L/0.001	0.2
	L/0.2	L/0.2	L/0.2	L/0.2	1.0
	L/0.1	L/0.1	L/0.1	L/0.1	5.0

where will are made a substitution in the

Certificate

Chemistry, Microbiology, and Technical Services

PAGE NO.

Port of Seattle

LABORATORY NO. 89964

concentration, mg/L (parts per million)

	5	6		8	MCL
Endrin Methoxychlor Toxaphene 2,4-D 2,4,5-TP (silvex) Lindane	L/0.0001	L/0.0001	L/0.0001	L/0.0001	0.02
	L/0.001	L/0.001	L/0.001	L/0.001	10.0
	L/0.005	L/0.005	L/0.005	L/0.005	0.5
	L/0.001	L/0.001	L/0.001	L/0.001	10.0
	L/0.001	L/0.001	L/0.001	L/0.001	1.0
	L/0.0001	L/0.0001	L/0.0001	L/0.0001	0.4

Priority Pollutants

Samples were analyzed for priority pollutants in accordance with Test Methods for Evaluating Solid Waste, (SW-846), U.S.E.P.A., 1982, Methods 8240 (volatile organics), 8270 (semi-volatile extractables), 8080 (pesticides and PCB's), 9010 (cyanide), and the 7000 series (metals analysis). Phenol analysis was in accordance with Method 420.2, Methods for Chemical Analysis of Water & Wastes, U.S.E.P.A., March, 1979.

parts per million (mg/kg), dry basis

Inorganics	1	2	3	4
Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver Thallium Zinc Total Cyanide Total Phenol	L/2. 22. 0.6 4.4 100. 200. 360. 2.4 70. 1.0 6.2 L/0.5 680. L/0.5	L/2. 14. 0.5 2.6 50. 120. 180. 0.8 50. 0.5 1.8 L/0.5 250. L/0.5	L/2. 13. 0.5 2.7 55. 90. 140. 1.1 60. L/0.5 1.8 L/0.5 230. L/0.5	L/2. 7. 0.4 0.3 40. 35. 24. 0.2 60. L/0.5 0.6 L/0.5 71. L/0.5
Total FileHol	1.5	L/0.5	0.6	1.1

Chemistry. Microbiology. and Technical Services

PAGE NO.

LABORATORY NO. 89964

Port of Seattle

parts per million (mg/kg), dry basis

	5	6		8	Method Blank
Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver Thallium Zinc Total Cyanide Total Phenol	L/2. 15. 0.4 1.9 65. 120. 200. 2.7 70. 0.6 2.1 L/0.5 260. L/0.5 L/0.5	L/2. 15. 0.3 1.8 60. 100. 180. 2.1 60. 0.7 2.2 L/0.5 230. L/0.5 L/0.5	L/2. 8. L/0.1 0.8 30. 45. 100. 0.3 40. L.0.5 0.7 L/0.5 99. L/0.5 L/0.5	L/2. 8. L/0.1 0.6 30. 35. 43. 2.3 30. L/0.5 0.7 L/0.5 81. L/0.5 L/0.5	L/2. L/0.5 L/0.1 L/0.1 L/5. L/1. L/1. L/0.1 L/0.5 L/0.5 L/0.5 L/0.5 L/0.5
					, , , ,

parts per billion (ug/kg), dry basis

Volatile Organics (by GC/MS)	1	2	3	4
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acrolein *Acetone Acrylonitrile *Carbon Disulfide 1,1-Dichloroethylene 1,1-Dichloroethane trans-1,2-Dichloroethylene Chloroform	L/5.	L/5.	L/5.	L/5.
	L/5.	L/5.	L/5.	L/5.
	L/5.	L/5.	L/5.	L/5.
	450.	590.	310.	300.
	L/50.	L/50.	L/50.	L/50.
	730.	620.	290.	2300.
	L/50.	L/50.	L/50.	L/50.
	L/5.	L/5.	L/5.	L/5.
	L/5.	L/5.	L/5.	L/5.
	L/5.	L/5.	L/5.	L/5.
	L/5.	L/5.	L/5.	L/5.

This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

and the second s

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

8

Port of Seattle

LABORATORY NO. 89964

	parts	per billion	(ug/kg),	dry basis
	1	2	3	4
*2-Butanone 1,2-Dichloroethane 1,1,1-Trichloroethane *Vinyl Acetate Bromodichloromethane Carbon Tetrachloride 1,2-Dichloropropane Trichloroethylene Benzene Chlorodibromomethane 1,1,2-Trichloroethane 2-Chloroethyl vinyl ether Bromoform *4-Methyl-2-pentanone *2-Hexanone 1,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene Chlorobenzene trans-1,3-Dichloropropene Ethylbenzene cis-1,3-Dichloropropene Styrene o-Xylene	L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5.	L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5.	L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5.	L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5.
	5	6	7	8
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acrolein	L/5. L/5. L/5. L/5. 350. L/50.	L/5. L/5. L/5. L/5. 240. L/50.	L/5. L/5. L/5. L/5. 110. L/50.	L/5. L/5. L/5. L/5. 47. L/50.

Certificate

Chemistry, Microbiology, and Technical Services

PAGE NO.

9

Port of Seattle

LABORATORY NO. 89964

	parts per	billion	(ug/kg),	dry basis
	5	6	7	8
*Acetone Acrylonitrile *Carbon Disulfide 1,1-Dichloroethylene 1,1-Dichloroethane trans-1,2-Dichloroethylene Chloroform *2-Butanone 1,2-Dichloroethane 1,1,1-Trichloroethane *Vinyl Acetate Bromodichloromethane Carbon Tetrachloride 1,2-Dichloropropane Trichloroethylene Benzene Chlorodibromomethane 2-Chloroethyl vinyl ether Bromoform *4-Methyl-2-pentanone *2-Hexanone 1,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene Chlorobenzene trans-1,3-Dichloropropene Ethylbenzene cis-1,3-Dichloropropene Styrene	1300. L/50. L/5.	910. L/50. L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5.	800. L/50. L/5.	110. L/50. L/5.
o-Xylene	L/5.	L/5.	L/5.	L/5.

war and and white the same of the

This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

- Charles with a Collection

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

Port of Seattle

LABORATORY NO. 89964

10

	parts per	billion	(ug/kg),	dry basis
	Field Blank	Soil Blank1	Soil Blank2	Soil Blank3
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acrolein *Acetone Acrylonitrile *Carbon Disulfide 1,1-Dichloroethylene 1,1-Dichloroethane trans-1,2-Dichloroethylene Chloroform *2-Butanone 1,2-Dichloroethane 1,1,1-Trichloroethane *Vinyl Acetate Bromodichloromethane Carbon Tetrachloride 1,2-Dichloropropane Trichloroethylene Benzene Chlorodibromomethane 1,1,2-Trichloroethane 2-Chloroethyl vinyl ether Bromoform *4-Methyl-2-pentanone *2-Hexanone 1,1,2,2-Tetrachloroethane Tetrachloroethylene	L/1. L/1. L/1. 10. L/10. 10. L/10. L/11. L/1. L/1. L/1. L/1. L/1. L/1. L/	L/1. L/1. L/1. 9. L/10. 14. L/10. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1	L/1. L/1. 1/1. 9. L/10. 10. L/10. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1	L/1. L/1. L/1. trace1 L/10. trace1 L/10. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1
			-,	-/

Chemistry. Microbiology, and Technical Services

PAGE NO.

Port of Seattle

LABORATORY NO. 89964

11

	parts per	billion	(ug/kg),	dry basis
	Field	Soil	Soil	Soil
	Blank	Blank1	Blank2	Blank3
Toluene Chlorobenzene trans-1,3-Dichloropropene Ethylbenzene cis-1,3-Dichloropropene Styrene o-Xylene	L/1.	L/1.	L/1.	L/1.
	L/1.	L/1.	L/1.	L/1.
	L/1.	L/1.	L/1.	L/1.
	L/1.	L/1.	L/1.	L/1.
	L/1.	L/1.	L/1.	L/1.
	L/1.	L/1.	L/1.	L/1.

parts per billion (ug/kg), dry basis

Extractables (by GC/MS)	1	2	3	4	5
N-nitrosodimethylamine Bis(2-chloroethyl)ether 2-Chlorophenol Phenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Bis(2-chloroisopropyl)ether Hexachloroethane N-nitroso-di-n-propylamine Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Bis(2-chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene Hexachlorobutadiene	L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200.	L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200.	L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200.	L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200.	L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200.
4-Chloro-m-cresol	L/200.	L/200.	L/200.	L/200.	L/200.

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

LABORATORY NO. 89964

12

Port of Seattle

parts per billion (ug/kg), dry basis

	1	22	3	4	5
Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2-Chloronaphthalene Acenaphthylene Dimethylphthalate 2,6-Dinitrotoluene Acenaphthene 2,4-Dinitrophenol 2,4-Dinitrotoluene 4-Nitrophenol Fluorene 4-Chlorophenyl phenyl ether Diethylphthalate 4,6-Dinitro-o-cresol 1,2-Diphenylhydrazine 4-Bromophenyl phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Dibutylphthalate Fluoranthene Pyrene Benzidine Butyl benzyl phthalate Benzo(a)anthracene Chrysene 3,3'-Dichlorobenzidine Bis(2-ethylhexyl)phthalate N-nitrosodiphenylamine Di-n-octyl phthalate Benzo(b)fluoranthene	L/200. L/200.	L/200.	L/200. L/200.	L/200. L/200.	L/200. L/200.
Benzo(k)fluoranthene	L/200.	1500.	710.	920.	1400.

Certificate

Chemistry. Microbiology. and Technical Services

PAGE NO.

13

Port of Seattle

LABORATORY NO. 89964

parts per billion (ug/kg), dry basis

	par so per striton (agring); ary basis				4313
	1	. 2	3	4	5
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(ah)anthracene Benzo(ghi)perylene *Aniline *Benzoic Acid *Benzyl Alcohol *4-Chloroaniline *Dibenzofuran *2-Methylnaphthalene *2-Methylphenol *4-Methylphenol *3-Nitroaniline *3-Nitroaniline *4-Nitroaniline *4-Nitroaniline	2000. 1200. L/200. 1400. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200.	1700. 520. L/200. 570. L/200.	1000. 340. L/200. 370. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200.	1100. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200.	2000. 620. L/200. 800. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200.
	6	7	8	Method Blank	
N-nitrosodimethylamine Bis(2-chloroethyl)ether 2-Chlorophenol Phenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Bis(2-chloroisopropyl)ether Hexachloroethane N-nitroso-di-n-propylamine Nitrobenzene Isophorone	L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200.	L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200.	L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200. L/200.	L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100.	

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

Port of Seattle

LABORATORY NO. 89964

14

parts per billion (ug/kg), dry basis

	6	7	8	Method Blank
2-Nitrophenol 2,4-Dimethylphenol Bis(2-chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene Hexachlorobutadiene 4-Chloro-m-cresol Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2-Chloronaphthalene Acenaphthylene Dimethylphthalate 2,6-Dinitrotoluene Acenaphthene 2,4-Dinitrophenol 2,4-Dinitrotoluene 4-Nitrophenol Fluorene 4-Chlorophenyl phenyl ether Diethylphthalate 4,6-Dinitro-o-cresol 1,2-Diphenylhydrazine 4-Bromophenyl phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Dibutylphthalate Fluoranthene Pyrene Benzidine	L/200.	L/200.	L/200.	L/100.
	L/200.	L/200.	L/200.	L/100.

This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

and the second second

15

Chemistry Microbiology, and Technical Services

PAGE NO.

LABORATORY NO. 89964

Port of Seattle

parts per billion (ug/kg), dry basis

	6	77	8	Method Blank
Butyl benzyl phthalate Benzo(a)anthracene Chrysene 3,3'-Dichlorobenzidine Bis(2-ethylhexyl)phthalate N-nitrosodiphenylamine Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(ah)anthracene Benzo(ghi)perylene *Aniline *Benzoic Acid *Benzyl Alcohol *4-Chloroaniline *Dibenzofuran *2-Methylnaphthalene *2-Methylphenol *4-Methylphenol *4-Nitroaniline *3-Nitroaniline *4-Nitroaniline *2,4,5-Trichlorophenol	L/200. 590. 1100. L/200. 440. L/200. 2000. 1400. 2400. 660. L/200.	L/200. 770. 1300. L/200. 1200. L/200. 1100. 990. 1000. 310. L/200.	L/200. 430. 890. L/200. 300. L/200. 1200. 870. 1200. 360. L/200.	L/100.

This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

- at Contact when the section of the contact of the

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

16

Port of Seattle

LABORATORY NO. 89964

		parts	per billio	on (ug/kg)	
Pesticides (by GC/ECD)	1	2	3	4	5
alpha-BHC beta-BHC delta-BHC gamma-BHC (lindane) heptachlor aldrin heptachlor epoxide dieldrin 4,4'-DDE 4,4'-DDD endosulfan sulfate 4,4'-DDT chlordane alpha endosulfan beta endosulfan endrin endrin aldehyde toxaphene PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1254 PCB 1254 PCB 1260	L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1.	L/1. L/1. L/1. 19. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1	L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1.	L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1.	L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1.
alaha DUC	6	7	8	Method Blank	
alpha-BHC beta-BHC delta-BHC gamma-BHC (lindane)	L/1. L/1. L/1. L/1.	L/1. L/1. L/1.	L/1. L/1. L/1.	L/1. L/1. L/1.	
heptachlor	L/I.	L/1.	L/1.	L/1.	

heptachlor

This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

L/1.

The second second second

L/1. L/1.

Chemistry. Microbiology. and Technical Services

PAGE NO.

Port of Seattle

LABORATORY NO. 89964

17

parts per billion (ug/kg)

	6	7	8	Method Blank
aldrin heptachlor epoxide dieldrin 4,4'-DDE 4,4'-DDD endosulfan sulfate 4,4'-DDT chlordane alpha endosulfan beta endosulfan endrin endrin aldehyde toxaphene PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1248 PCB 1254 PCB 1260	L/1. L/1. L/1. 11. L/1. L/1. L/1. L/1. L	L/1. L/1. L/1. 22. L/1. L/1. L/1. L/1. L/1. L/20. L/20. L/20. L/20. L/20. L/20. L/20. L/20. L/20.	L/1. L/1. L/1. 19. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/20.	L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1.
			-,	

maria. A month of the Liver on it.

Certificate

Chemistry. Microbiology. and Technical Services

PAGE NO. 18

Port of Seattle

LABORATORY NO. 89964

WATER ANALYSES

Prior to filtering, samples were tested as follows:

	9	10	11_	12	13_
Turbidity, Nephelometer Units	0.4	0.5	0.2	0.3	0.2

Samples were then filtered and preserved and tested as shown:

Salinity, parts per thousand 27.88 26.98 28.31 28.62 28.31

Samples were analyzed for priority pollutants in accordance with Test Methods for Evaluating Solid Waste, (SW-846), U.S.E.P.A., 1982, Methods 8240 (volatile organics), 8270 (semi-volatile extractables), 8080 (pesticides and PCB's), 9010 (cyanide), and the 7000 series (metals analysis). Phenol analysis was in accordance with Method 420.2, Methods for Chemical Analysis of Water & Wastes, U.S.E.P.A., March, 1979.

Inorganics

parts per billion (ug/L)

	9	10_	11_	12	13	Method Blank
Antimony	L/5.	L/5.	L/5.	L/5.	L/5.	L/5.
Arsenic	L/5.	L/5.	L/5.	L/5.	L/5.	L/5.
Beryllium	L/1.	L/1.	L/1.	L/1.	L/1.	
Cadmium	L/2.	L/2.	L/2.	L/2.	L/2.	L/2.
Chromium	22.	23.	22.	20.	24.	L/2.

Certificate

Chemistry. Microbiology, and Technical Services

PAGE NO. 19

Port of Seattle

LABORATORY NO. 89964

parts per billion (ug/L)

	9	10_	11	12	13_	Method <u>Blank</u>
Copper Lead Mercury Nickel Selenium Silver Thallium Zinc Total Cyanide Total Phenol	L/5. L/5. L/5. L/5. 3. L/500. L/5. L/5.	L/5. L/5. L/5. L/5. 2. L/500. L/5. L/5.	L/5. L/5. L/5. L/5. L/5. L/2. L/500. L/5. L/5.	L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5.	L/5. L/5. L/5. L/5. L/5. L/50. L/5. L/5. L/5.	10. L/5. L/2. L/5. L/5. L/5. L/500. 30. L/5. L/5.

Volatile Organics (by GC/MS)

parts per billion (ug/L)

A . was to the second of the second

	9	10	11_	12_	13	Field Blank
Chloromethane	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Bromomethane	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Vinyl Chloride	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Chloroethane	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Methylene Chloride	trace2	trace2	trace2	trace2	trace2	10.
Acrolein	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.
*Acetone	trace2	trace2	trace2	trace2	trace2	10.
Acrylonitrile	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.
*Carbon Disulfide	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
1,1-Dichloroethylene	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
1,1-Dichloroethane	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
trans-1,2-Dichloroethylene	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Chloroform	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
*2-Butanone	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
1,2-Dichloroethane	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
1,1,1-Trichloroethane	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
6						

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

Port of Seattle

LABORATORY NO. 89964

20

parts per billion (ug/L)

	9	10_	11	12	13	Field Blank
*Vinyl Acetate Bromodichloromethane Carbon Tetrachloride 1,2-Dichloropropane Trichloroethylene Benzene Chlorodibromomethane 1,1,2-Trichloroethane 2-Chloroethyl vinyl ether Bromoform *4-Methyl-2-pentanone *2-Hexanone 1,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene Chlorobenzene trans-1,3-Dichloropropene Ethylbenzene cis-1,3-Dichloropropene Styrene o-Xylene	L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1.	L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1.	L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1.	L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1.	L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1.	L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1.

Extractables (by GC/MS)

parts per billion (ug/L)

man in which the state of

	9	10_	11_	12	13	Method Blank
N-nitrosodimethylamine	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Bis(2-chloroethyl)ether	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
2-Chlorophenol	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.

Certificate

Chemistry. Microbiology. and Technical Services

PAGE NO. 21

LABORATORY NO. 89964

Port of Seattle

parts per billion (ug/L)

	9	10_	11	12	13_	Method Blank
Pheno1	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
1,3-Dichlorobenzene	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
1,4-Dichlorobenzene	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
<pre>1,2-Dichlorobenzene</pre>	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Bis(2-chloroisopropyl)ether	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Hexachloroethane	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
N-nitroso-di-n-propylamine	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Nitrobenzene	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Isophorone	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
2-Nitrophenol	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
2,4-Dimethylphenol	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Bis(2-chloroethoxy)methane	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
2,4-Dichlorophenol	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
1,2,4-Trichlorobenzene	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Naphthalene	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Hexachlorobutadiene	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
4-Chloro-m-cresol	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Hexachlorocyclopentadiene	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
2,4,6-Trichlorophenol	L/1.	. L/1.	L/1.	L/1.	L/1.	L/1.
2-Chloronaphthalene	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Acenaphthylene	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Dimethylphthalate	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
2,6-Dinitrotoluene	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Acenaphthene	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
2,4-Dinitrophenol	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
2,4-Dinitrotoluene	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
4-Nitrophenol	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Fluorene	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
4-Chlorophenyl phenyl ether	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Diethylphthalate	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
4,6-Dinitro-o-cresol	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
1,2-Diphenylhydrazine	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.

and in our or to the history

This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

mounter and the chief

Certificate

Chemistry. Microbiology. and Technical Services

PAGE NO.

22

Port of Seattle

LABORATORY NO. 89964

parts per billion (ug/L)

	9	10_	11	12	13	Method Blank
4-Bromophenyl phenyl ether	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Hexachlorobenzene	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Pentachlorophenol	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Phenanthrene	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Anthracene	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Dibutylphthalate	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Fluoranthene	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Pyrene	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Benzidine	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Butyl benzyl phthalate	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Benzo(a)anthracene	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Chrysene	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
3,3'-Dichlorobenzidine	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Bis(2-ethylhexyl)phthalate	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
N-nitrosodiphenylamine	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Di-n-octyl phthalate	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Benzo(b)fluoranthene	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Benzo(k)fluoranthene	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Benzo(a)pyrene	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Indeno(1,2,3-cd)pyrene	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Dibenzo(ah)anthracene	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
Benzo(ghi)perylene	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
*Aniline	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
*Benzoic Acid	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
*Benzyl Alcohol	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
*4-Chloroaniline	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
*Dibenzofuran	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
*2-Methylnaphthalene	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
*2-Methylphenol	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO. 23

Port of Seattle

LABORATORY NO. 89964

parts per billion (ug/L)

	9	10_	11	12	13	Method Blank
*4-Methylphenol *2-Nitroaniline *3-Nitroaniline *4-Nitroaniline *2,4,5-Trichlorophenol	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.

Pesticides (by GC/ECD)

parts per billion (ug/L)

	9	10	11	12	13_	Method <u>Blank</u>
alpha-BHC beta-BHC delta-BHC gamma-BHC (lindane) heptachlor aldrin heptachlor epoxide dieldrin 4,4'-DDE 4,4'-DDD endosulfan sulfate 4,4'-DDT chlordane alpha endosulfan beta endosulfan endrin endrin aldehyde toxaphene	L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01	L/0.01 L/0.01 L/0.01	L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01	L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01	L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01	L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01

This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

The same of the sa

Chemistry. Microbiology, and Technical Services

PAGE NO.

24

Port of Seattle

LABORATORY NO. 89964

parts per billion (ug/L)

	9	10	11	12	13	Method Blank
PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1248 PCB 1254 PCB 1260	L/0.2 L/0.2 L/0.2 L/0.2 L/0.2 L/0.2	L/0.2 L/0.2 L/0.2 L/0.2 L/0.2 L/0.2	L/0.2 L/0.2 L/0.2 L/0.2 L/0.2 L/0.2	L/0.2 L/0.2 L/0.2 L/0.2 L/0.2 L/0.2	L/0.2 L/0.2 L/0.2 L/0.2 L/0.2 L/0.2 L/0.2	L/0.2 L/0.2 L/0.2 L/0.2 L/0.2 L/0.2

Key

L/ indicates "less than"

* indicates Additional compounds from the EPA's Hazardous Substances List. trace1 indicates a number between 1-10 ug/kg. trace2 indicates a number between 2-10 ug/L.

Respectfully submitted,

Laucks Testing Laboratories, Inc.

J/ M. Owens

JMO:veg

Chemistry Microbiology, and Technical Services

PAGE NO.

Port of Seattle

LABORATORY NO. 89964

25

APPENDIX A

Spike Quality Control Report, Inorganics

parts per million (mg/kg), dry basis

Sample	<u>Analyte</u>	Sample Found	Spike Level	Sample & Spike Found	% Recovery
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Silver Cyanide Arsenic Phenol Cadmium Selenium Antimony Beryllium Copper Lead Nickel Thallium Zinc Oil & Grease TOH Mercury	2.2 L/0.5 14.6 L/0.5 1.8 0.7 L/2. 0.3 100. 180. 60. L/0.5 230. 0.91 L/15. 2.1	2.4 2.1 2.5 2.9 0.5 2.5 10. 0.5 100. 250. 50. 2.5 100. 2.5	4.1 1.0 17.0 3.0 2.3 3.2 4.1 0.9 210. 450. 115. 2.5 330. 1.94 57. 4.8	79. 48. 96. 103. 100. 100. 41. 120. 110. 108. 110. 100. 103. 106. 130.
		parts per	million (n	ng/L)	
6 6 6 6 6 6 6	Arsenic Barium Cadmium Chromium Lead Selenium Silver Mercury	L/0.2 0.3 0.02 L/0.1 0.1 L/0.2 L/0.1 L/0.005	1.0 1.0 1.0 1.0 1.0 1.0 0.25	1.0 1.2 0.99 0.9 1.1 1.0 0.3	100. 90. 97. 90. 100. 100. 30.

This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Course of a supplement store of the

Certificate

Chemistry. Microbiology. and Technical Services

PAGE NO. 26

Port of Seattle

LABORATORY NO. 89964

APPENDIX B Spike Quality Control Report, Organics

Sample	<u>Analyte</u>	Sample Found	Spike Level	Spike Found	% Recovery	Control Limits
		parts pe	r billion	(ug/kg)		
6 MS	Lindane Heptachlor Aldrin Dieldrin Endrin DDT	L/1. L/1. L/1. L/1. L/1. L/1.	8.0 8.0 8.0 20.0 20.0 20.0	7.0 13.8 15.7 26.2 29.0 184.	87.5 173. 196. 131. 145. 920.	46-127 35-130* 34-132 31-134 42-139 23-134*
		parts per	r billion ((ug/L)		
11 MS	Lindane Heptachlor Aldrin Dieldrin Endrin DDT	L/0.01 L/0.01 L/0.01 L/0.01 L/0.01 L/0.01	0.0667 0.0667 0.0667 0.167 0.167	0.0470 0.0694 0.0598 0.145 0.128 0.182	70.4 104. 89.6 86.9 76.8	46-127 34-130 34-132 31-134 42-139 23-134
8 MS	2,4-D	L/0.001	0.02	0.0206	103.	**
8 MSD	2,4,5-TP 2,4-D	L/0.001 L/0.001	0.01 0.02	0.00923 0.0181	92.3 90.3	**
6 MS	2,4,5-TP Endrin	L/0.001 L/0.0001	0.01 0.00050	0.00830	83.0 87.7	** 56-121

^{*} Matrix interference

^{**} none established

Chemistry. Microbiology, and Technical Services

PAGE NO.

27

Port of Seattle

LABORATORY NO. 89964

APPENDIX C

Matrix Spike/Matrix Spike Duplicate Report

		part	parts per billion (ug/L)				
Sample	Analyte	Spike <u>Added</u>	Sample Result	MS Result	% Rec		
11 11 11 11 11 11 11 11 11 11 11 11	Cyanide Chromium Mercury Phenol Selenium Arsenic Antimony Thallium Cadmium Lead Silver Zinc Copper Nickel Beryllium	50. 10. 100. 50. 20. 20. 50. 25. 25. 25. 25. 25. 25.	L/5. 22. L/2. L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/5	56. 31. 98. 54. 20. 25. 45. 1400. 21. 25. 26. 21. 26. 20. 9.	112. 90. 98. 108. 100. 125. 90. 56. 84. 100. 104. 84. 104. 80. 90.		

Chemistry Microbiology, and Technical Services

PAGE NO. 28

Port of Seattle

LABORATORY NO. 89964

APPENDIX D

Surrogate Recovery Quality Control Report

Listed below are surrogate (chemically similar) compounds utlized in the analysis of volatile and organic compounds. The surrogates are added to every sample prior extraction and analysis to monitor for matrix effects, purging efficiency, and sample processing errors. The control limits represent the 95% confidence interval established in our laboratory through repetitive analysis of these sample types.

parts per billion (ug/kg)

Sample No.	Surrogate Compound	Spike Level	Spike Found	% Recovery	Control Limit
1	d4-1,2-Dichloroethane	461.	329.	71.4	50-160
	d8-Toluene	461.	458.	99.3	50-160
	p-Bromofluorobenzene	461.	447.	97.0	50-160
2	d4-1,2-Dichloroethane	303.	215.	70.8	50-160
	d8-Toluene	303.	297.	97.9	50-160
	p-Bromofluorobenzene	303.	285.	94.1	50-160
3	d4-1,2-Dichloroethane	369.	263.	71.2	50-160
	d8-Toluene	369.	364.	98.7	50-160
	p-Bromofluorobenzene	369.	343.	92.9	50-160
4	d4-1,2-Dichloroethane	311.	221.	71.1	50-160
	d8-Toluene	311.	299.	96.3	50-160
	p-Bromofluorobenzene	311.	285.	91.7	50-160
5	d4-1,2-Dichloroethane	413.	294.	71.1	50-160
	d8-Toluene	413.	402.	97.3	50-160
	p-Bromofluorobenzene	413.	366.	88.6	50-160
6	d4-1,2-Dichloroethane	283.	199.	70.3	50-160
	d8-Toluene	283.	274.	96.8	50-160
	p-Bromofluorobenzene	283.	248.	87.5	50-160

Chemistry. Microbiology. and Technical Services

PAGE NO.

Port of Seattle

LABORATORY NO. 89964

29

parts per billion (ug/kg)

Sample No.	Surrogate Compound	Spike Level	Spike Found	% Recovery	Control Limit
7	d4-1,2-Dichloroethane d8-Toluene p-Bromofluorobenzene	225. 225. 225.	155. 217. 198.	69.0 96.5 87.9	50-160 50-160 50-160
8	d4-1,2-Dichloroethane d8-Toluene p-Bromofluorobenzene	147. 147. 147.	103. 141. 131.	69.8 95.7 88.8	50-160 50-160 50-160
6 MS	d4-1,2-Dichloroethane d8-Toluene p-Bromofluorobenzene	338. 338. 338.	243. 319. 320.	71.9 94.4 94.7	50-160 50-160 50-160
method blank soil 1	d4-1,2-Dichloroethane d8-Toluene p-Bromofluorobenzene	50. 50. 50.	35.9 48.0 46.7	71.8 96.0 93.4	50-160 50-160 50-160
method blank soil 2	d4-1,2-Dichloroethane d8-Toluene p-Bromofluorobenzene	50. 50. 50.	35.5 47.7 47.2	71.0 95.4 94.4	50-160 50-160 50-160
method blank soil 3	d4-1,2-Dichloroethane d8-Toluene p-Bromofluorobenzene	50. 50.	35.4 48.5 46.7	70.8 97.0 93.4	50-160 50-160 50-160

parts per billion (ug/L)

Sample No.	Surrogate Compound	Spike Level	Spike Found	% Recovery	Control Limit
9	d4-1,2-Dichloroethane	50.	48.7	97.4	77-120
	d8-Toluene	50.	47.7	95.4	86-119
	p-Bromofluorobenzene	50.	48.0	96.0	85-121

Certificate

Chemistry. Microbiology, and Technical Services

PAGE NO.

Port of Seattle

LABORATORY NO. 89964

30

parts per billion (ug/L)

Sample No.	Surrogate Compound	Spike Level	Spike Found	% Recovery	Control Limit
10	d4-1,2-Dichloroethane	50.	49.2	98.4	77-120
	d8-Toluene	50.	48.7	97.4	86-119
	p-Bromofluorobenzene	50.	48.4	96.8	85-121
11	d4-1,2-Dichloroethane	50.	48.9	97.8	77-120
	d8-Toluene	50.	47.5	95.0	86-119
	p-Bromofluorobenzene	50.	48.2	96.4	85-121
12	d4-1,2-Dichloroethane	50.	49.1	98.2	77-120
	d8-Toluene	50.	48.9	97.8	86-119
	p-Bromofluorobenzene	50.	48.9	97.8	85-121
13	d4-1,2-Dichloroethane	50.	50.6	101.2	77-120
	d8-Toluene	50.	47.9	95.8	86-119
	p-Bromofluorobenzene	50.	48.4	96.8	85-121
Method Blank	d4-1,2-Dichloroethane	50.	49.4	98.8	77-120
	d8-Toluene	50.	48.0	96.0	86-119
	p-Bromofluorobenzene	50.	47.7	95.4	85-121
Field Blank	d4-1,2-Dichloroethane	50.	45.4	90.8	77-120
	d8-Toluene	50.	47.4	94.8	86-119
	p-Bromofluorobenzene	50.	46.3	92.6	85-121
11 MS	d4-1,2-Dichloroethane	50.	45.2	90.4	77-120
	d8-Toluene	50.	47.1	94.2	86-119
	p-Bromofluorobenzene	50.	48.7	97.4	85-121

This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

. The second of the second of the

Certificate

Chemistry. Microbiology, and Technical Services

PAGE NO. 31

Port of Seattle

LABORATORY NO. 89964

parts per billion (ug/kg)

Sample No.	Surrogate Compound	Spike Level	Spike Found	% Recovery	Control Limit
1	2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl	4004. 2008. 4000. 4000. 1996. 2004. 4000. 2000.	3086. 433. 3233. 3124. 1501. 1687. 3890. 2072.	77.1 21.6 80.8 78.1 75.2 84.2 97.3	24-133 20-122 20-140 20-140 10-114 20-150
2	2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl	4004. 2008. 4000. 4000. 1996. 2004. 4000. 2000.	4082. 228. 4088. 4048. 1936. 2220. 4008. 1502.	102. 11.4 102. 101. 97.0 111. 100. 75.1	24-133 20-122 20-140 20-140 10-114 20-150
3	2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl	4004. 2008. 4000. 4000. 1996. 2004. 4000. 2000.	2778. 368. 2560. 2542. 1278. 1694. 3028. 1134.	69.4 18.3 64.0 63.6 64.0 84.5 75.7 56.7	24-133 20-122 20-140 20-140 10-114 20-150
4	2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl	4004. 2008. 4000. 4000. 1996. 2004. 4000. 2000.	2923. 322. 2680. 2580. 1337. 1705. 3368. 1270.	-73.0 16.0 67.0 64.5 67.0 85.1 84.2 63.5	24-133 20-122 20-140 20-140 10-114 20-150

This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

which define the transfer to the terms of

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO. 32

Port of Seattle

LABORATORY NO. 89964

parts per billion (ug/kg)

Sample No.	Surrogate Compound	Spike Level	Spike Found	% Recovery	Control Limit
5	2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl	4004. 2008. 4000. 4000. 1996. 2004. 4000. 2000.	3478. 540. 3548. 3428. 1528. 1896. 3206. 2034.	86.9 26.9 88.7 85.7 76.6 94.6 80.2	24-133 20-122 20-140 20-140 10-114 20-150
6	2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl	4004. 2008. 4000. 4000. 1996. 2004. 4000. 2000.	3203. 273. 3140. 3000. 1609. 1862. 3180. 1590.	80.0 13.6 78.5 75.0 80.6 92.9 79.5	24-133 20-122 20-140 20-140 10-114 20-150
7	2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl	4004. 2008. 4000. 4000. 1996. 2004. 4000. 2000.	3312. 258. 3306. 3132. 1530. 1894. 3402. 1532.	82.7 12.8 82.7 78.2 76.7 94.5 85.1 76.6	24-133 20-122 20-140 20-140 10-114 20-150
8	2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl	4004. 2008. 4000. 4000. 1996. 2004. 4000. 2000.	5054. 500. 4894. 4744. 2360. 2828. 5290. 2064.	126. 24.9 122. 119. 118. 141. 132.	24-133 20-122 20-140 20-140 10-114 20-150

Chemistry. Microbiology. and Technical Services

PAGE NO.

Port of Seattle

LABORATORY NO. 89964

33

parts per billion (ug/kg)

Sample No.	Surrogate Compound	Spike Level	Spike Found	% Recovery	Control Limit
6 MS	2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl	4004. 2008. 4000. 4000. 1996. 2004. 4000. 2000.	4040. 582. 4030. 3928. 1814. 2240. 4132. 2500.	101. 29.0 101. 98.2 90.9 112. 103. 125.	24-133 20-122 20-140 20-140 10-114 20-150
Method Blank	2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl	4004. 2008. 4000. 4000. 1996. 2004. 4000. 2000.	3686. 1268. 3842. 3485. 1744. 1785. 4149. 1482.	92.1 63.1 96.1 87.1 87.4 89.1 104. 74.1	24-133 20-122 20-140 20-140 10-114 20-150
	part	s per bill	ion (ug/L	<u>)</u>	
9	2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl	102.1 51.2 102.0 102.0 50.9 51.1 102.0 51.0	48.2 20.0 42.1 48.3 21.0 23.4 81.5 22.6	47.2 39.0 41.2 47.4 41.2 45.9 79.9	23-121 15-103 41-120 44-119 10-130 33-128

This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

. second - consiste to be been

Certificate

Chemistry. Microbiology, and Technical Services

PAGE NO. 34

Port of Seattle

LABORATORY NO. 89964

parts per billion (ug/L)

Sample No.	Surrogate Compound	Spike Level	Spike Found	% Recovery	Control Limit
10	2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl	102.1 51.2 102.0 102.0 50.9 51.1 102.0 51.0	57.2 37.4 61.8 74.6 39.0 43.2 87.3 36.3	56.0 73.0 60.6 73.2 76.5 84.5 85.6 71.7	23-121 15-103 41-120 44-119 10-130 33-128
11	2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl	133.5 66.9 133.3 133.3 66.5 66.8 133.3 66.7	74.0 40.3 65.7 90.2 50.2 57.0 116.5 50.4	55.5 60.3 49.3 67.6 75.4 85.3 87.4 75.6	23-121 15-103 41-120 44-119 10-130 33-128
12	2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl	102.1 51.2 102.0 102.0 50.9 51.1 102.0 51.0	0. 33.5 0. 0. 33.1 39.3 69.7 32.2	0. 65.4 0. 0. 65.0 76.9 68.3 63.2	23-121 15-103 41-120 44-119 10-130 33-128
13	2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl	103.2 51.8 103.1 103.1 51.4 51.6 103.1 51.5	44.6 30.1 36.6 53.1 30.3 37.2 65.4 32.4	43.3 58.1 35.5 51.5 59.0 72.0 63.4 62.9	23-121 15-103 41-120 44-119 10-130 33-128

Chemistry. Microbiology, and Technical Services

PAGE NO. 35

Port of Seattle

LABORATORY NO. 89964

parts per billion (ug/L)

Sample No.	Surrogate Compound	Spike Level	Spike Found	% Recovery	Control Limit
11 MS	2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl	133.5 66.9 133.3 133.3 66.5 66.8 133.3 66.7	61.0 44.2 56.1 78.1 47.4 55.9 122.3 41.5	45.7 66.1 42.1 58.6 71.3 83.7 91.7 62.2	23-121 15-103 41-120 44-119 10-130 33-128
Method Blank	2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl	100.1 50.2 100.0 100.0 49.9 50.1 100.0 50.0	39.1 0. 26.8 49.3 0. 0. 74.9 34.3	39.0 0. 26.8 49.3 0. 0. 74.9 68.6	23-121 15-103 41-120 44-119 10-130 33-128
9 10 11 12 13 Blank 11 MS	dibutylchlorendate dibutylchlorendate dibutylchlorendate dibutylchlorendate dibutylchlorendate dibutylchlorendate dibutylchlorendate	0.667 0.667 0.667 0.667 0.667 0.667	0.550 0.594 0.900 0.550 0.614 0.556 1.30	82.5 89.1 135. 82.5 92.0 83.3 195.	48-136 48-136 48-136 48-136 48-136 48-136
1					
1 2 3 4 5 6	dibutylchlorendate dibutylchlorendate dibutylchlorendate dibutylchlorendate dibutylchlorendate dibutylchlorendate dibutylchlorendate	20.0 20.0 20.0 20.0 20.0 20.0	23.0 24.6 23.8 32.4 18.5 5.34	115. 123. 119. 162. 57.1 26.7	20-150 20-150 20-150 20-150 20-150 20-150

This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

war with the think ...

THE WAR SHE CAN MANAGE WATER

Chemistry. Microbiology. and Technical Services

PAGE NO.

Port of Seattle

LABORATORY NO. 89964

36

parts per billion (ug/kg)

Sample No.	Surrogate Compound	Spike Level	Spike Found	% Recovery	Control Limit
7 8 Blank 6 MS	dibutylchlorendate dibutylchlorendate dibutylchlorendate dibutylchlorendate	20.0 20.0 20.0 20.0	23.8 11.4 22.6 101.	119. 57.1 113. 506.	20-150 20-150 20-150 20-150
		parts per	million (mg	J/L)	
1 2 3 4 5 6 7 8 Blank MS	Isodrin	0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004	0.00033 0.00048 0.00039 0.00034 0.00034 0.00038 0.00038	90.8 120. 99.8 117. 42. 85.5 113. 69.9 91.8	43-118* 43-118* 43-118 43-118 43-118 43-118 43-118 43-118 43-118
1 2 3 4 5 6 7 8 Blank 8 MS 8 MSD	2,4,5-T 2,4,5-T 2,4,5-T 2,4,5-T 2,4,5-T 2,4,5-T 2,4,5-T 2,4,5-T 2,4,5-T 2,4,5-T	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	0.00941 0.0112 0.00996 0.0104 0.0116 0.0119 0.0134 0.00807 0.0125	94.1 112. 99.6 104. 116. 119.	28-128 28-128 28-128 28-128 28-128 28-128 28-128* 28-128* 28-128* 28-128*

Matrix effect

This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

and the supplication and the state of the section

Chemistry, Microbiology, and Technical Services

PAGE NO. 37

Port of Seattle

LABORATORY NO. 89964

APPENDIX E

Matrix Spike/Matrix Spike Duplicate Analysis - Soils

Reported below are the results of additional QC compounds utilized in the analysis of organic compounds. Compounds of interest are spiked into two additional sample aliquots prior to extraction and/or analysis to monitor for matrix effects, sample processing errors, and to calculate percent recoveries of compunds of interest and relative error in the analysis. The control limits represent the 95% confidence interval established in the laboratory through repetitive analysis of these sample types.

nto non hilliam /.../...

	parts per billion (ug/kg)					
Compound	Conc Spike	Conc Samp	Conc MS	% REC	RPD Limit	REC Limit
1,1-Dichloroethene Trichloroethene Chlorobenzene Toluene Benzene	25. 25. 25. 25. 25.	0. 0. 0.	20.3 21.6 24.1 27.2 23.3	86.4	22 24 21 21 21	59-172 62-137 60-133 59-139 66-142
1,2,4-Trichlorobenzene Acenaphthene 2,4-Dinitrotoluene Di-n-Butylphthalate Pyrene N-Nitrosodipropylamine 1,4-Dichlorobenzene	50.0 50.0 50.0 50.0 50.0 50.0	0. 0. 0. 105.5 0.	45.0 62.6 44.4 57.9 176. 63.8 52.8	125. 88.8 116. 141. 128.	23 19 47 7 36 38 27	38-107 31-137 28-89 29-135 35-142 41-126 28-104
Pentachlorophenol Phenol 2-Chlorophenol P-Chloro-m-cresol 4-Nitrophenol	100. 100. 100. 100.	0. 0. 0.	74.7 106.5 102.4 93.4 95.0	74.7 106. 102. 93.4 95.0	47 35 50 33 50	17-109 26-90 25-102 26-103 11-114

This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Acres - Langue solotti Divisioni .

Chemistry, Microbiology, and Technical Services

PAGE NO. 38

Port of Seattle

LABORATORY NO. 89964

Matrix Spike/Matrix Spike Duplicate Analysis - Waters

parts per billion (ug/L)

Compound	Conc Spike	Conc Samp	Conc MS	% REC	RPD <u>Limit</u>	REC <u>Limit</u>
1,1-Dichloroethene Trichloroethene Chlorobenzene Toluene Benzene	25. 25. 25. 25. 25.	0. 0. 0.	16.7 18.8 20.3 22.0 19.7	66.8 75.2 81.2 88.0 78.8	14 14 13 13	61-145 71-120 75-130 76-125 76-127
1,2,4-Trichlorobenzene Acenaphthene 2,4-Dinitrotoluene Di-n-Butylphthalate Pyrene N-Nitrosodipropylamine 1,4-Dichlorobenzene	50.0 50.0 50.0 50.0 50.0 50.0	0. 0. 0. 0.	30.7 47.7 38.0 41.1 24.3 44.7 32.2	61.4 95.4 76.0 82.2 48.6 89.4 64.4	28 31 38 40 31 38 28	39-98 46-116 24-96 11-117 26-127 41-116 36-97
Pentachlorophenol Phenol 2-Chlorophenol P-Chloro-m-cresol 4-Nitrophenol	100. 100. 100. 100.	0. 0. 0.	81.0 44.0 57.8 63.7 37.1	81.0 44.0 57.8 63.7 37.1	50 42 40 42 50	9-103 12-89 27-123 23-97 10-80

Key

Conc = Concentration

RPD = Relative Percent Difference

Samp = Sample

MS = Matrix Spike

REC = Recovery

This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

. to he we remade on this or heigh

Laucks First and Second Series including QA-QC

Laucks Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (200

(206)767-5060

Certificate

17.1.16

14 8 42) J-1404 HCE-14 S-4 6.8-8.8

Chemistry Microbiology, and Technical Services

CUENT

Port of Seattle P.O. Box 1209 Seattle, WA 98111 ATTN: Doug Hotchkiss LABORATORY NO.

85194

DATE

Fail

Aug. 6, 1984

Contained

REPORT ON

SOIL

SAMPLE DENTIFICATION

Samples were submitted and assigned sequential sample numbers. At your request, only the samples identified below were analyzed:

Boring Sample ESTS PERFORMED 12 A 7) J-1404 HCE-12 S-1 0-3.6' 0-3' (2) 6-27 Fail Contained NO RESULTS: 6 A 15) J-1404 HCE-6 S-1 1.1-4.1' 1.1-4.1' (2) 6-20 B 16) J-1404 HCE-6 S-2 7.3-10.3' 4.1-7.1' (2) 6-20 8 A 22) J-1404 HCE-8 S-1 0-3.4' 0-3' 6-22 B | B | 23) J-1404 HCE-8 S-2 4.5-6.5' 4.7-6.7' 6-22 10 B 28) J-1404 HCE-10 S-2 3.5-7.5' 4.5-7.5' 6-22 10 B'29) J-1404 HCE-10 S-3 8.5-10.5' 8.7-10.7' 6-22 . 11 12 B36) J-1404 HCE-12 S-2 5.5-9.0' 5.5-9.0' 6-27 Open Pass

Samples were passed through a No. 10 sieve prior to analysis. Only material passing the sieve was analyzed. Percentages retained were as follows

	7 ·	6-A 15	6-B 16	8 - A 22	8-B 23
% retained	6	3	6	L/2	6
Major description	wood	wood	wood		shells
Minor description	shells, rocks		_		— - B —
% retained	6	L/	2 L/2	. L/	2
Major description	she	11s —	_		-
Minor description	WOO	od —	_	_	-

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

2

LABORATORY NO.

85194

Port of Seattle

Routine analyses were then performed on the samples, with results as follow:

	%, as received basis						
	7	15	16	22	23		
Total Solids	52.0	45.5	54.8	52.9	50.0		
	_28		36	42			
Total Solids	52.	8 75.	2 74.9	68.2	2		
	%, dry basis						
	7	_15	16	22	23		
Total Organic Carbon Total Volatile Solids Oil & Grease Sulfide as S Sand Silt Clay	3.3 9.2 1.1 .030 22.7 55.3 22.0	5.2 11.4 1.8 .046 7.6 65.0 27.4	3.4 7.2 1.0 .076 42.8 42.1 15.1	2.2 6.7 0.47 .063 28.8 52.8 18.4	3.0 9.1 0.90 .043 16.9 55.6 27.5		
	28		36	42	_		
Total Organic Carbon Total Volatile Solids Oil & Grease Sulfide as S Sand Silt		9 3. 50 0. 007 . 6 81.	3 1.2 17 L/0.0 003 .0 6 88.4	6.2 1 0.2 04 .0 51.0	2 21 005 0		

Clay

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO

3

Port of Seattle

LABORATORY NO.

85194

Samples were then analyzed for Halogenated Hydrocarbons in accordance with Washington State Department of Ecology WAC 173-303 with results as follow:

	7	15	_16	22	_23
Halogenated Hydrocarbons* parts per million (mg/kg), as received basis	L/15.	L/15.	L/15.	L/15.	L/15.
	_28	_29	_36	42	MCL
Halogenated Hydrocarbons* parts per million (mg/kg), as received basis	L/15.	L/15.	L/15.	L/15.	*

^{*} reported as the sum of the halogens bromide, chloride, fluoride and iodide. A result of less than 100 parts per million is classified as undesignated waste.

Samples were analyzed in accordance with 40 CFR, Part 261.24 for EP Toxicity, with results as shown below:

concentration, mg/L

	7	15	16	_22	_23
Arsenic	L/0.1	L/0.1	L/0.1	L/0.1	L/0.1
Barium	L/0.5	L/0.5	L/0.5	L/0.5	L/0.5
Cadmium	L/0.02	L/0.02	L/0.02	L/0.02	L/0.02
Chromium	L/0.1	L/0.1	L/0.1	L/0.1	L/0.1
Lead	L/0.2	L/0.2	L/0.2	L/0.2	L/0.2

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

4

Port of Seattle

LABORATORY NO.

85194

concentration, mg/L

		_15	16		_23
Mercury Selenium Silver Endrin Methoxychlor Toxaphene 2,4-D 2,4,5-TP (silvex) Lindane	L/0.005	L/0.005	L/0.005	L/0.005	L/0.005
	L/0.1	L/0.1	L/0.1	L/0.1	L/0.1
	L/0.1	L/0.0002	L/0.0002	L/0.0002	L/0.0002
	L/0.0002	L/0.001	L/0.001	L/0.001	L/0.001
	L/0.001	L/0.005	L/0.005	L/0.005	L/0.005
	L/0.005	L/0.005	L/0.005	L/0.005	L/0.005
	L/0.002	L/0.002	L/0.002	L/0.002	L/0.002
	L/0.002	L/0.0001	L/0.0001	L/0.0001	L/0.0001

concentration, mg/L

		_29	_36	42	MCL
Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver Endrin Methoxychlor Toxaphene 2,4-D 2,4,5-TP (silvex) Lindane	L/0.1 L/0.5 L/0.02 L/0.1 L/0.2 L/0.005 L/0.01 L/0.0002 L/0.001 L/0.005 L/0.005 L/0.005 L/0.002 L/0.0001	L/0.1 L/0.5 L/0.02 L/0.1 L/0.2 L/0.005 L/0.01 L/0.1 L/0.0002 L/0.001 L/0.005 L/0.005 L/0.002 L/0.002	L/0.1 L/0.5 L/0.02 L/0.1 L/0.2 L/0.005 L/0.01 L/0.0002 L/0.001 L/0.005 L/0.005 L/0.005 L/0.002 L/0.002	L/0.1 L/0.5 L/0.02 L/0.1 L/0.2 L/0.005 L/0.01 L/0.1 L/0.0002 L/0.001 L/0.005 L/0.005 L/0.002 L/0.002	5.0 100. 1.0 5.0 5.0 0.2 1.0 5.0 0.02 10.0 0.5 10.0

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

5

LABORATORY NO.

85194

Port of Seattle

Samples were analyzed also for Gravimetric Aromatic Hydrocarbons in accordance with Washington State Department of Ecology WAC 173-303. The method requires analysis of the sample through successive stages until the result obtained is less than 1% by weight (as received basis) or until the fourth stage has been completed. Results are as shown below:

	6 by weight, as received basis*						
Stage:	7	15		16	_22	_23_	
1. Soxhlet Extraction	.22	.28	•	32	.22	.084	
•		28	29	36	42	_	
1. Soxhlet Extraction		052	.082	.015	.19)	
* for 4,5,6 membered rings							

Samples were analyzed for priority pollutants in accordance with 40 CFR, Part 261, with results as shown below:

Inorganics	7	_15	16	22	_23
Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Mercury	L/0.5 21. 0.32 5.8 89. 110. 160.	L/0.5 19. 0.32 10. 300. 190. 350.	L/0.5 15. 0.19 6.1 100. 91.	L/0.5 15. 0.23 2.2 44. 74. 110.	L/0.5 20. 0.31 3.5 100. 130. 220.

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

6

LABORATORY NO.

85194

Port of Seattle

		_15	16	_22	_23
Nickel	50.	58.	46.	40.	57•
Selenium	0.6	L/0.5	0.5	L/0.5	0.8
Silver	2.0	3.7	1.6	0.6	3.2
Thallium	L/0.5	L/0.5	L/0.5	L/0.5	L/0.5
Zinc	420.	550.	320.	240.	360.
Total Cyanide	5.6	1.3	0.6	L/0.5	0.7
Total Phenol	L/0.1	L/0.1	L/0.1	L/0.1	L/0.1
Volatile Organics (by GC/MS)	part	s per bil	lion (ug/k	g), dry ba	sis
Chloromethane	L/4.	L/4.	L/4.	L/4.	L/4.
Bromomethane	L/4.	L/4.	L/4.	L/4.	L/4.
Vinyl Chloride	L/4.	L/4.	L/4.	L/4.	L/4.
Chloroethane	L/4.	L/4.	L/4.	L/4.	L/4.
Methylene Chloride	240.	160.	180.	780.	290.
Acrolein	L/4.	L/4.	L/4.	L/4.	L/4.
*Acetone	1,100.	660.	L/20.	L/20.	L/20.
Acrylonitrile	L/4.	L/4.	L/4.	L/4.	L/4.
*Carbon Disulfide	L/4.	L/4.	L/4.	L/4.	L/4.
1,1-Dichloroethylene	L/4.	L/4.	L/4.	L/4.	L/4.
1,1-Dichloroethane	L/4.	L/4.	L/4.	L/4.	L/4.
trans-1,2-Dichloroethylene	L/4.	L/4.	L/4.	L/4.	L/4.
Chloroform	L/4.	L/4.	L/4.	L/4.	L/4.
*2-Butanone	L/4.	L/4.	L/4.	L/4.	L/4.
1,2-Dichloroethane	L/4.	L/4.	L/4.	L/4.	L/4.
1,1,1-Trichloroethane	L/4.	L/4.	L/4.	L/4.	L/4.
*Vinyl Acetate	L/4.	L/4.	L/4.	L/4.	L/4.
Bromodichloromethane	L/4.	L/4.	L/4.	L/4.	L/4.
Carbon Tetrachloride	L/4.	L/4.	L/4.	L/4.	L/4.
1,2-Dichloropropane	L/4.	L/4.	L/4.	L/4.	L/4.
Trichloroethylene	L/4.	L/4.	L/4.	L/4.	L/4.
Benzene	L/4.	L/4.	L/4.	L/4.	L/4.

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

LABORATORY NO. 85194

Port of Seattle

	parts per billion (ug/kg), dry basis					
	7	_15	16		_23	
Chlorodibromomethane 1,1,2-Trichloroethane 2-Chloroethyl vinyl ether Bromoform *4-Methyl-2-pentanone *2-Hexanone 1,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene Chlorobenzene trans-1,3-Dichloropropene Ethylbenzene cis-1,3-Dichloropropene *Styrene *o-Xylene + p-Xylene **Fluorotrichloromethane	L/4. L/4. L/4. L/4. L/4. L/4. L/4. L/4.	L/4. L/4. L/4. L/4. L/4. L/4. 20. L/4. 1/4. L/4. L/4. L/4.	L/4. L/4. L/4. L/4. 10. L/4. 50. L/4. 10. L/4. 20. 100.	L/4. L/4. L/4. L/4. L/4. L/4. L/4. L/4.	L/4. L/4. L/4. L/4. L/4. L/4. L/4. L/4.	
N-nitrosodimethylamine Bis(2-chloroethyl)ether 2-Chlorophenol Phenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Bis(2-chloroisopropyl)ether Hexachloroethane N-nitroso-di-n-propylamine Nitrobenzene Isophorone	L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100.	L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100.	L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100.	L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100.	L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100. L/100.	

This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

8

LABORATORY NO.

85194

Port of Seattle

	7	15	16	_22	_23
2-Nitrophenol	L/100.	L/100.	L/100.	L/100.	L/100.
2,4-Dimethylphenol	L/100.	L/100.	L/100.	L/100.	L/100.
Bis(2-chloroethoxy)methane	L/100.	L/100.	L/100.	L/100.	L/100.
2,4-Dichlorophenol	L/100.	L/100.	L/100.	L/100.	L/100.
1,2,4-Trichlorobenzene	L/100.	L/100.	L/100.	L/100.	L/100.
Naphthalene	L/100.	L/100.	3.800.	630.	L/100.
Hexachlorobutadiene	L/100.	L/100.	L/100.	L/100.	L/100.
4-Chloro-m-cresol	L/100.	L/100.	L/100.	L/100.	L/100.
Hexachlorocyclopentadiene	L/100.	L/100.	L/100.	L/100.	L/100.
2,4,6-Trichlorophenol	L/100.	L/100.	L/100.	L/100.	L/100.
2-Chloronaphthalene	L/100.	L/100.	L/100.	L/100.	L/100.
Acenaphthylene	L/100.	L/100.	L/100.	L/100.	L/100.
Dimethylphthalate	L/100.	L/100.	L/100.	L/100.	L/100.
2,6-Dinitrotoluene	L/100.	L/100.	L/100.	L/100.	L/100.
Acenaphthene	L/100.	L/100.	L/100.	2,040.	L/100.
2,4-Dinitrophenol	L/100.	L/100.	L/100.	L/100.	L/100.
2,4-Dinitrotoluene	L/100.	L/100.	L/100.	L/100.	L/100.
4-Nitrophenol	L/100.	L/100.	L/100.	L/100.	L/100.
Fluorene	L/100.	L/100.	L/100.	L/100.	L/100.
4-Chlorophenyl phenyl ether	L/100.	L/100.	L/100.	L/100.	L/100.
Diethylphthalate	L/100.	L/100.	L/100.	L/100.	L/100.
4,6-Dinitro-o-cresol	L/100.	L/100.	L/100.	L/100.	L/100.
1,2-Diphenylhydrazine	L/100.	L/100.	L/100.	L/100.	L/100.
4-Bromophenyl phenyl ether	L/100.	L/100.	L/100.	L/100.	L/100.
Hexachlorobenzene	L/100.	L/100.	L/100.	L/100.	L/100.
Pentachlorophenol	L/100.	L/100.	L/100.	L/100.	L/100.
Phenanthrene	8,400.	L/100.	L/100.	2,990.	L/100.
Anthracene	1,500.	L/100.	L/100.	1,350.	L/100.
Dibutylphthalate	L/100.	L/100.	L/100.	L/100.	L/100.
Fluoranthene	15,100.	L/100.	L/100.	6,130.	L/100.
Pyrene	L/100.	L/100.	L/100.	4,440.	L/100.
Benzidine	L/100.	L/100.	L/100.	L/100.	L/100.

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

9

LABORATORY NO.

85194

Port of Seattle

	7	15	16	_22	23
Butyl benzyl phthalate	L/100.	L/100.	L/100.	L/100.	L/100.
Benzo(a)anthracene	L/100.	L/100.	L/100.	L/100.	L/100.
Chrysene	L/100.	L/100.	L/100.	L/100.	L/100.
3,3°-Dichlorobenzidine	L/100.	L/100.	L/100.	L/100.	L/100.
Bis(2-ethylhexyl)phthalate	4,200.	3,600.	2,600.	2.100.	2,600.
N-nitrosodiphenylamine	L/100.	L/100.	L/100.	L/100.	L/100.
Di-n-octyl phthalate	L/100.	510.	L/100.	630.	L/100.
Benzo(b)fluoranthene	L/100.	L/100.	L/100.	L/100.	L/100.
Benzo(k)fluoranthene	L/100.	L/100.	L/100.	L/100.	L/100.
Benzo(a)pyrene	L/100.	L/100.	L/100.	L/100.	L/100.
Indeno(1,2,3-cd)pyrene	L/100.	L/100.	L/100.	L/100.	L/100.
Dibenzo(ah)anthracene	L/100.	L/100.	L/100.	L/100.	L/100.
Benzo(ghi)perylene	L/100.	L/100.	L/100.	L/100.	L/100.
2,3,7,8-Tetrachlorodibenzo- p-dioxin (TCDD)	L/100.	L/100.	L/100.	L/100.	L/100.
*Aniline	L/100.	L/100.	L/100.	L/100.	L/100.
*Benzoic Acid	L/100.	L/100.	L/100.	L/100.	L/100.
*Benzyl Alcohol	L/100.	L/100.	L/100.	L/100.	L/100.
*4-Chloroaniline	L/100.	L/100.	L/100.	L/100.	L/100.
*Dibenzofuran	L/100.	L/100.	L/100.	1,530.	L/100.
*2-Methylnaphthalene	L/100.	L/100.	L/100.	L/100.	L/100.
*2-Methylphenol	L/100.	L/100.	L/100.	L/100.	L/100.
*4-Methylphenol	L/100.	L/100.	L/100.	L/100.	L/100.
*2-Nitroaniline	L/100.	L/100.	L/100.	L/100.	L/100.
*3-Nitroaniline	L/100.	L/100.	L/100.	L/100.	L/100.
*4-Nitroaniline	L/100.	L/100.	L/100.	L/100.	L/100.
*2,4,5-Trichlorophenol	L/100.	L/100.	L/100.	L/100.	L/100.

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

10

LABORATORY NO.

85194

Port of Seattle

Pesticides (by GC/ECD)	7	_15	16		_23
alpha—BHC	L/5.	L/5.	L/5.	L/5.	L/5.
beta-BHC	L/5.	L/5.	L/5.	L/5.	L/5.
delta-BHC	L/5.	L/5.	L/5.	L/5.	L/5.
gamma-BHC (lindane)	L/5.	L/5.	L/5.	L/5.	L/5.
heptachlor	L/5.	L/5.	L/5.	L/5.	10.
aldrin	L/5.	L/5.	L/5.	L/5.	L/5.
heptachlor epoxide	L/5.	L/5.	L/5.	L/5.	L/5.
dieldrin	L/5.	L/5.	L/5.	L/5.	L/5.
4,4°-DDE	L/5.	L/5.	L/5.	L/5.	L/5.
4,4°-DDD	120.	170.	80.	L/10.	50.
endosulfan sulfate	L/10.	40.	L/10.	L/10.	40.
4,4°-DDT	40.	L/10.	15.	L/10.	30.
chlordane	L/10.	L/10.	L/10.	L/10.	L/10.
alpha endosulfan	L/10.	L/10.	L/10.	L/10.	L/10.
beta endosulfan	L/10.	L/10.	L/10.	L/10.	L/10.
endrin	L/10.	L/10.	L/10.	L/10.	L/10.
endrin aldehyde	L/10.	L/10.	L/10.	L/10.	L/10.
toxaphene	L/400.	L/400.	L/400.	L/400.	L/400.
PCB 1016.	L/100.	L/100.	L/100.	L/100.	L/100.
PCB 1221	L/100.	L/100.	L/100.	L/100.	L/100.
PCB 1232	L/100.	L/100.	L/100.	L/100.	L/100.
PCB 1242	1,100.	970.	580.	L/100.	540.
PCB 1248	L/100.	L/100.	L/100.	L/100.	L/100.
PCB 1254	L/100.	L/100.	L/100.	L/100.	L/100.
PCB 1260	4,100.	5.640.	1,600.	1,200.	3,200.

Certificate

Chemistry Microbiology, and Technical Services

Port of Seattle

PAGE NO.

LABORATORY NO.

85194

parts per million (mg/kg), dry basis

	parts pe	er million	(mg/kg), c	ry basis	
Inorganics	28	_29	36	42	
Antimony	L/0.5	L/0.5	L/0.5	L/0.5	
Arsenic	16.	5.1	2.2	10.	
Beryllium	0.24	0.13	0.07	0.14	
Cadmium	2.2	0.7	0.4	1.5	
Chromium	50.	17.	18.	30.	
Copper	98.	34.	10.	47.	
Lead	150.	66.	2.7	62.	
Mercury	0.89	0.22	L/0.05	0.66	
Nickel	44.	17.	2.5	30.	
Selenium	0.5	L/0.5	L/0.5	L/0.5	
Silver	1.6	0.5	L/0.2	0.5	
Thallium	L/0.5	L/0.5	L/0.5	L/0.5	
Zinc	250.	92.	36.	150.	
Total Cyanide	0.6	L/0.5	L/0.5	L/0.5	
Total Phenol	L/0.1	L/0.1	L/0.1	L/0.1	
Volatile Organics (by GC/MS)	part	s per bill	ion (ug/kg), dry bas	is
Chloromethane	L/4.	L/3.	L/3.	L/3.	L/1.
Bromomethane	L/4.	L/3.	L/3.	L/3.	L/1.
Vinyl Chloride	L/4.	L/3.	L/3.	L/3.	L/1.
Chloroethane	L/4.	L/3.	L/3.	L/3.	L/1.
Methylene Chloride	150.	230.	140.	340.	L/1.
Acrolein	L/4.	L/3.	L/3.	L/3.	L/1.
*Acetone	L/20.	L/10.	320.	220.	L/1.
Acrylonitrile	L/4.	L/3.	L/3.	L/3.	L/1.
*Carbon Disulfide	L/4.	L/3.	L/3.	L/3.	L/1.
1,1-Dichloroethylene	L/4.	L/3.	L/3.	L/3.	L/1.
1,1-Dichloroethane	L/4.	L/3.	L/3.	L/3.	L/1.
trans-1,2-Dichloroethylene	L/4.	L/3.	L/3.	L/3.	L/1.
Chloroform	L/4.	L/3.	L/3.	L/3.	L/1.

This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Certificate

Chemistry. Microbiology. and Technical Services

PAGE NO.

12

LABORATORY NO.

85194

Port of Seattle

	_28	_29	_36	42	Method Blank
*2-Butanone 1,2-Dichloroethane 1,1,1-Trichloroethane *Vinyl Acetate Bromodichloromethane Carbon Tetrachloride 1,2-Dichloropropane Trichloroethylene Benzene Chlorodibromomethane 1,1,2-Trichloroethane 2-Chloroethyl vinyl ether Bromoform *4-Methyl-2-pentanone *2-Hexanone 1,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene Chlorobenzene trans-1,3-Dichloropropene Ethylbenzene cis-1,3-Dichloropropene *Styrene *o-Xylene + p-Xylene **Fluorotrichloromethane	L/4. L/4. L/4. L/4. L/4. L/4. L/4. L/4.	L/3. L/3. L/3. L/3. L/3. L/3. L/3. L/3.	L/3. L/3. L/3. L/3. L/3. L/3. L/3. L/3.	L/3. L/3. L/3. L/3. L/3. L/3. L/3. L/3.	L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1.

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

13

LABORATORY NO.

85194

Port of Seattle

Extractables (by GC/MS)	28	_29	36	42	Method Blank
N-nitrosodimethylamine	L/100.	L/100.	L/100.	L/100.	L/100.
Bis(2-chloroethyl)ether	L/100.	L/100.	L/100.	L/100.	L/100.
2-Chlorophenol	L/100.	L/100.	L/100.	L/100.	L/100.
Phenol	L/100.	L/100.	L/100.	L/100.	L/100.
1,3-Dichlorobenzene	L/100.	L/100.	L/100.	L/100.	L/100.
1,4-Dichlorobenzene	L/100.	L/100.	L/100.	L/100.	L/100.
1,2-Dichlorobenzene	L/100.	L/100.	L/100.	L/100.	L/100.
Bis(2-chloroisopropyl)ether	L/100.	L/100.	L/100.	L/100.	L/100.
Hexachloroethane	L/100.	L/100.	L/100.	L/100.	L/100.
-nitroso-di-n-propylamine	L/100.	L/100.	L/100.	L/100.	L/100.
Nitrobenzene	L/100.	L/100.	L/100.	L/100.	L/100.
Isophorone	L/100.	L/100.	L/100.	L/100.	L/100.
2-Nitrophenol	L/100.	L/100.	L/100.	L/100.	L/100.
2,4-Dimethylphenol	L/100.	L/100.	L/100.	L/100.	L/100.
Bis(2-chloroethoxy)methane	L/100.	L/100.	L/100.	L/100.	L/100.
2,4-Dichlorophenol	L/100.	L/100.	L/100.	L/100.	L/100.
1,2,4-Trichlorobenzene	L/100.	L/100.	L/100.	L/100.	L/100.
Naphthalene	L/100.	L/100.	L/100.	L/100.	L/100.
Hexachlorobutadiene	L/100.	L/100.	L/100.	L/100.	L/100.
4-Chloro-m-cresol	L/100.	L/100.	L/100.	L/100.	L/100.
Hexachlorocyclopentadiene	L/100.	L/100.	L/100.	L/100.	L/100.
2,4,6-Trichlorophenol	L/100.	L/100.	L/100.	L/100.	L/100.
2-Chloronaphthalene	L/100.	L/100.	L/100.	L/100.	L/100.
Acenaphthylene	L/100.	L/100.	L/100.	L/100.	L/100.
Dimethylphthalate	L/100.	L/100.	L/100.	L/100.	L/100.
2,6-Dinitrotoluene	L/100.	L/100.	L/100.	L/100.	L/100.
Acenaphthene	1,370.	440.	L/100.	L/100.	L/100.
2,4-Dinitrophenol	L/100.	L/100.	L/100.	L/100.	L/100.
2,4-Dinitrotoluene	L/100.	L/100.	L/100.	L/100.	L/100.
4-Nitrophenol	L/100.	L/100.	L/100.	L/100.	L/100.
Fluorene	L/100.	L/100.	L/100.	L/100.	L/100.
4-Chlorophenyl phenyl ether	L/100.	L/100.	L/100.	L/100.	L/100.

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

14

LABORATORY NO.

85194

Port of Seattle

	_28	29	36	42	Method Blank
Diethylphthalate	L/100.	L/100.	L/100.	L/100.	L/100.
4,6-Dinitro-o-cresol	L/100.	L/100.	L/100.	L/100.	CO. Comment of the control of the co
1,2-Diphenylhydrazine	L/100.	L/100.	L/100.	L/100.	L/100. L/100.
4-Bromophenyl phenyl ether	L/100.	L/100.	L/100.	L/100.	L/100.
Hexachlorobenzene	L/100.	L/100.	L/100.	L/100.	L/100.
Pentachlorophenol	L/100.	L/100.	L/100.	L/100.	L/100.
Phenanthrene	3,690.	L/100.	L/100.	L/100.	L/100.
Anthracene	1,290.	L/100.	L/100.	L/100.	L/100.
Dibutylphthalate	L/100.	L/100.	L/100.	L/100.	L/100.
Fluoranthene	9.200.	L/100.	L/100.	L/100.	L/100.
Pyrene	L/100.	L/100.	L/100.	3,670.	L/100.
Benzidine	L/100.	L/100.	L/100.	L/100.	L/100.
Butyl benzyl phthalate	L/100.	L/100.	L/100.	L/100.	L/100.
Benzo(a)anthracene	L/100.	L/100.	L/100.	L/100.	L/100.
Chrysene	L/100.	L/100.	L/100.	L/100.	L/100.
3,3°-Dichlorobenzidine	L/100.	L/100.	L/100.	L/100.	L/100.
Bis(2-ethylhexyl)phthalate	1,800.	3.200.	1.390.	L/100.	L/100.
N-nitrosodiphenylamine	L/100.	L/100.	L/100.	L/100.	L/100.
Di-n-octyl phthalate	L/100.	L/100.	670.	L/100.	L/100.
Benzo(b)fluoranthene	L/100.	L/100.	L/100.	L/100.	L/100.
Benzo(k)fluoranthene	L/100.	L/100.	L/100.	L/100.	L/100.
Benzo(a)pyrene	L/100.	L/100.	L/100.	L/100.	L/100.
Indeno(1,2,3-cd)pyrene	L/100.	L/100.	L/100.	L/100.	L/100.
Dibenzo(ah)anthracene	L/100.	L/100.	L/100.	L/100.	L/100.
Benzo(ghi)perylene	L/100.	L/100.	L/100.	L/100.	L/100.
2,3,7,8-Tetrachlorodibenzo-	L/100.	L/100.	L/100.	L/100.	L/100.
p-dioxin (TCDD)		-,	27100.	L/100.	L/100.
*Aniline	L/100.	L/100.	L/100.	L/100.	L/100.
*Benzoic Acid	L/100.	L/100.	L/100.	L/100.	L/100.
*Benzyl Alcohol	L/100.	L/100.	L/100.	L/100.	L/100.
*4-Chloroaniline	L/100.	L/100.	L/100.	L/100.	L/100.
*Dibenzofuran	L/100.	L/100.	L/100.	L/100.	L/100.

Certificate

Chemistry. Microbiology. and Technical Services

PAGE NO.

15

LABORATORY NO.

85194

Port of Seattle

	28	_29	_36	42	Method Blank
<pre>*2-Methylnaphthalene *2-Methylphenol *4-Methylphenol *2-Nitroaniline *3-Nitroaniline *4-Nitroaniline *2,4,5-Trichlorophenol</pre>	L/100. L/100. L/100. L/100. L/100. L/100.	L/100. L/100. L/100. L/100. L/100. L/100.	L/100. L/100. L/100. L/100. L/100. L/100.	L/100. L/100. L/100. L/100. L/100. L/100.	L/100. L/100. L/100. L/100. L/100. L/100. L/100.
Pesticides (by GC/ECD)					
alpha—BHC beta—BHC delta—BHC gamma—BHC (lindane) heptachlor aldrin heptachlor epoxide dieldrin 4,4°—DDE 4,4°—DDD endosulfan sulfate 4,4°—DDT chlordane alpha endosulfan beta endosulfan endrin	L/5. L/5. L/5. L/5. L/5. L/5. 15. 90. L/10. L/10. L/10. L/10.	L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/10. L/10. L/10. L/10. L/10.	L/5. L/5. L/5. L/5. L/5. L/5. L/10. L/10. L/10. L/10. L/10.	L/5. L/5. L/5. L/5. L/5. L/5. L/5. L/10. L/10. L/10. L/10. L/10.	

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

16

Port of Seattle

LABORATORY NO.

85194

parts per billi	on (ug/kg)	, dry basis
-----------------	------------	-------------

	28	29	36	42
toxaphene	L/400.	L/400.	L/400.	L/400.
PCB 1016	L/100.	L/100.	L/100.	L/100.
PCB 1221	L/100.	L/100.	L/100.	L/100.
PCB 1232	L/100.	L/100.	L/100.	L/100.
PCB 1242	L/100.	L/100.	L/100.	L/100.
PCB 1248	L/100.	L/100.	L/100.	L/100.
PCB 1254	L/100.	L/100.	100.	L/100.
PCB 1260	3,100.	1,000.	L/100.	200.

Key

L/ indicates "less than"
MCL=Maximum Contamination Level allowed per regulation.
*Additional compounds from the EPA°s Hazardous Substances List.
**Other compounds of interest identified, in estimated amounts.

Respectfully submitted,

Laucks Testing Laboratories, Inc.

J. M. Rwens

JMO:rtv

Certificate

Chemistry Microbiology and Technical Services

PAGE NO.

17

LABORATORY NO.

85194

Port of Seattle

APPENDIX A

Surrogate Recovery Quality Control Report

Listed below are surrogate (chemically similar) compounds utilized in the analysis of organic compounds. The surrogates are added to every sample prior to analysis and extraction to monitor for matrix effects, purging efficiency and sample processing errors. The control limits represent the 95% confidence interval established in our laboratory through repetitive analysis of these sample types.

Priority Pollutant Analyses:

parts per million (mg/kg)

Sample No.	Surrogate Compound	Spike Level	Spike Found	% Recovery	Control Limit
7	2-Fluorophenol	33.05	33.36	91.9	26-116
7	2-Fluoroaniline	34.09	17.42	51.1	*
7	d5-Phenol	32.28	18.04	55.9	10-104
7	d5-Nitrobenzene	35.89	29.39	81.9	19-115
7	2-Fluorobiphenyl	32.28	33.99	105.3	17-125
7	2,4,6-Tribromophenol	32.28	29.79	92.3	32-124
15	2-Fluorophenol	38.47	27.35	71.1	26-116
15	2-Fluoroaniline	39.67	5.91	14.9	*
15	d5-Pheno1	37.57	17.73	47.2	10-104
15	d5-Nitrobenzene	41.77	32.08	76.8	19-115
15	2-Fluorobiphenyl	37.57	30.24	80.5	17-125
15	2,4,6-Tribromophenol	37.57	27.20	72.4	32-124
16	2-Fluorophenol	31.47	34.49	109.6	26-116
16	2-Fluoroaniline	32.45	23.59	72.7	20-110 *
16	d5-Pheno1	30.73	29.10	94.7	10-104
16	d5-Nitrobenzene	34.17	31.71	92.8	
16	2-Fluorobiphenyl	30.73	34.26	111.5	19-115
16	2,4,6-Tribromophenol	30.73	35.40	115.2	17-125 32-124

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

18

LABORATORY NO.

85194

Port of Seattle

parts per million (mg/kg)

Sample No.	Surrogate Compound	Spike Level	Spike Found	% Recovery	Control Limit
22 22 22 22	2-Fluorophenol 2-Fluoroaniline d5-Phenol d5-Nitrobenzene	31.94 32.94 31.19 34.68	31.95 21.56 26.66 33.86	100.0 65.5 85.5 97.7	26-116 * 10-104 19-115
22 22 23	2-Fluorobiphenyl 2,4,6-Tribromophenol 2-Fluorophenol	31.19 31.19 34.18	32.65 30.32 40.42	104.7 97.2 118.3	17-125 32-124 26-116
23 23 23 23	2-Fluoroaniline d5-Phenol d5-Nitrobenzene 2-Fluorobiphenyl	35.25 33.38 37.12 33.38	20.07 33.42 38.01 35.96	56.9 100.1 102.4 107.7	* 10-104 19-115 17-125
23 28 28	2,4,6-Tribromophenol 2-Fluorophenol 2-Fluoroaniline	33.38 31.86 32.86	40.37 36.49 21.16	120.9 114.5 64.4	32-124 26-116 *
28 28 28 28	d5-Phenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol	31.11 34.60 31.11 31.11	27.83 34.23 32.40 32.85	89.5 98.9 104.1	10-104 19-115 17-125
29 29 29	2-Fluorophenol 2-Fluoroaniline d5-Phenol	23.62 24.35 23.06	27.65 7.86 16.88	105.6 117.1 32.3 73.2	32-124 26-116 * 10-104
29 29 29 36	d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol	25.65 23.06 23.06	21.17 22.94 21.71	82.5 99.5 94.1	19-115 17-125 32-124
36 36 36	2-Fluorophenol 2-Fluoroaniline d5-Phenol d5-Nitrobenzene	22.81 23.52 22.27 24.77	30.90 18.66 19.75 26.26	135.5 79.3 88.7 106.0	26-116 * 10-104 19-115
36 36	2-Fluorobiphenyl 2,4,6-Tribromophenol	22.27	22.80 18.08	102.4	17-125 32-124

Chemistry Microbiology, and Technical Services

PAGE NO.

19

Port of Seattle

LABORATORY NO.

parts per million (mg/kg)

Sample No.	Surrogate Compound	Spike Level	Spike Found	% Recovery	Control Limit
42	2-Fluorophenol	25.90	25.28	97.6	26-116
42	2-Fluoroaniline	26.71	14.96	56.0	*
42	d5-Phenol	24.29	17.23	68.1	10-104
42	d5-Nitrobenzene	28.12	31.91	113.5	19-115
42	2-Fluorobiphenyl	25.29	28.66	113.3	17-125
42	2,4,6-Tribromophenol	25.29	25.59	101.2	32-124
36 Spike	2-Fluorophenol	22.81	26.95	118.1	26-116
36 Spike	2-Fluoroaniline	23.52	12.48	53.1	*
36 Spike	d5-Phenol	22.27	19.66	88.3	10-104
36 Spike	d5-Nitrobenzene	24.77	23.68	95.6	19-115
36 Spike	2-Fluorobiphenyl	22.27	21.79	97.9	17-125
36 Spike	2,4,6-Tribromophenol	22.27	18.41	82.7	32-124
36 Dup.	2-Fluorophenol	22.81	25.82	113.2	26-116
36 Dup.	2-Fluoroaniline	23.52	11.73	49.9	*
36 Dup.	d5-Phenol	22.27	20.84	93.6	10-104
36 Dup.	d5-Nitrobenzene	24.77	25.63	103.5	19-115
36 Dup.	2-Fluorobiphenyl	22.27	24.41	96.1	17-125
36 Dup.	2,4,6-Tribromophenol	22.27	19.54	87.7	32-124
Blank ,	2-Fluorophenol	17.07	20.71	121.3	26-116
Blank	2-Fluoroaniline	26.71	30.27	113.3	*
Blank	d5-Phenol	16.67	15.56	93.3	10-104
Blank	d5-Nitrobenzene	18.53	19.69	106.3	19-115
Blank	2-Fluorobiphenyl	. 16.67	17.76	106.5	17-125
Blank	2,4,6-Tribromophenol	16.67	16.78	100.7	32-124

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

20

Port of Seattle

LABORATORY NO.

85194

parts per billion (ug/kg)

Sample No.	Surrogate Compound	Spike Level	Spike Found	% Recovery	Control Limit
7	Dibutylchlorendate	333.	380. 686.	114. 206.	41-121 41-121
15 16	Dibutylchlorendate Dibutylchlorendate	333. 333.	446.	134.	41-121
22	Dibutylchlorendate Dibutylchlorendate	333.	583.	175.	41-121
23		333.	406.	122.	41-121
28	Dibutylchlorendate	333.	390.	117.	41-121
	Dibutylchlorendate	333.	500.	150.	41-121
29 36	Dibutylchlorendate	333.	669.	201.	41-121
42	Dibutylchlorendate	333.	460.	138.	41-121
Blank	Dibutylchlorendate	333.	483.	145.	41-121
36 Spike I	Dibutylchlorendate	333.	292.	87.8	41-121
36 Spike II	Dibutylchlorendate	333.	380.	114.	41-121

E.P. Toxicity Analyses:

parts per million (mg/L)

Sample No.	Surrogate Compound	Spike Level	Spike Found	% Recovery	Control Limit
7	Isodrin	0.00200	0.00172	86.0	43-118
15	Isodrin	0.00200	0.00145	72.8	43-118
16	Isodrin	0.00200	0.00146	73.0	43-118
22	Isodrin	0.00200	0.00189	94.3	43-118
23	Isodrin	. 0.00200	0.00185	92.3	43-118
28	Isodrin	0.00200	0.00193	96.6	43-118
29	Isodrin	0.00200	0.00210	105.	43-118
36	Isodrin	0.00200	0.00209	104.	43-118
42	Isodrin	0.00200	0.00183	91.7	43-118
Blank	Isodrin	0.00200	0.00104	52.0	43-118
Spike I	Isodrin	0.00200	0.00177	88.4	43-118
Spike II	Isodrin	0.00200	0.00205	102.	43-118

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

21

Port of Seattle

LABORATORY NO.

85194

parts per million (mg/L)

Sample No.	Surrogate Compound	Spike Level	Spike Found	శ Recovery	Control Limit
7 15 16	2,4,5-T 2,4,5-T 2,4,5-T	0.0400 0.0400 0.0400	.0241 .0145 .0203	60.3 36.3 50.8	* * *
22 23 28	2,4,5-T 2,4,5-T 2,4,5-T	0.0400 0.0400 0.0400	.0143 .0163 .0215	35.5 40.7 53.7	* *
29 36 42	2,4,5-T 2,4,5-T 2,4,5-T	0.0400 0.0400 0.0400	.0146 .0184 .0232	36.6 45.9 58.0	* *
Blank 29 Spike I 29 Spike II	2,4,5-T 2,4,5-T 2,4,5-T	0.0400 0.0400 0.0400	.0292 .0428 .0354	73.0 107. 88.5	* *

APPENDIX B

Replicate Quality Control Report

3 amp re	# Analyte	Replicate 1	Replicate 2	Relative Error, %
PRIORIT	Y POLLUTANT ANALY	SES		
			%	
42 42	Total Solids Volatile Sol		66.9	1.9

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

22

LABORATORY NO.

85194

Port of Seattle

parts per million (mg/kg)

Sample #	Analyte	Replicate 1	Replicate 2	Relative Error, %
42 42 42 42 42 42	Antimony Arsenic Beryllium Cadmium Chromium Copper	L/0.5 15. 0.14 1.5 30. 47.	L/0.5 10. 0.16 1.6 31.	0. 33. 12. 6.2 3.2 6.4
42 42 42 42 42 42 42 7 Spike 22 42	Lead Mercury Nickel Selenium Silver Thallium Zinc Phenol Cyanide Cyanide	62. 0.66 30. L/0.5 0.5 L/0.5 150. 0.8 L/0.5 L/0.5	50. 0.68 27. L/0.5 0.6 L/0.5 140. 0.7 L/0.5 L/0.5	19. 2.9 10. 0. (0.1) 0. 6.7 12. 0.

BULK SAMPLE ANALYSES

22 22 22 22	Sand Silt Clay Total Organic	28.8 52.8 18.4 2.2	20.0 59.6 20.4	30. 11. 10.
42 42	Carbon Oil & Grease Sulfide	0.21	0.28 0.006	0. 25. (.001)

Chemistry Microbiology, and Technical Services

PAGE NO.

23

Port of Seattle

LABORATORY NO.

85194

parts per million (mg/L)

Sample #	Analyte	Replicate 1	Replicate 2	Relative Error, %
E.P. TOXIC	ITY ANALYSES			2,707, 10
36 36 36 36 36 36 36 36	Cadmium Chromium Lead Silver Barium Mercury Arsenic Selenium	L/0.02 L/0.1 L/0.2 L/0.1 L/0.5 L/0.005 L/0.005	L/0.02 L/0.1 L/0.2 L/0.1 L/0.5 L/0.005 L/0.005	0. 0. 0. 0. 0.

APPENDIX C

Spike Quality Control Report

Sample # Analyt	Sample Found	mg/L Spike Level	Spike Found	% Recovery	Control Limit
PRIORITY POLLUTAN	IT ANALYSES				
42 Antimo 42 Arseni 42 Beryll 42 Cadmiu 42 Chromi 42 Copper 42 Lead	ium 0.14 m 1.5 um 30.	2.5 25. 0.25 0.5 100. 100.	1.8 35. 0.27 1.9 130. 150.	72. 100. 52. 80. 100. 103. 80.	* * * * * * *

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

24

Port of Seattle

LABORATORY NO.

85194

	mg/L			
	Spike	Spike	%	Control
Found	Level	Found	Recovery	Limit
0.66	0.25	0.04		
				*
				*
				*
				*
				*
	The second second			*
			88.	*
	0.8	0.8	100.	*
L/0.5	3.3	3.9	118.	*
	ug/L			
L/5. L/5. L/10. L/10. L/5.	333. 333. 333. 333. 333. 333. 333. 333	350. 376. 380. 376. 360. 380. 523. 529. 519. 513. 523. 423.	105. 113. 114. 113. 110. 114. 157. 159. 156. 154. 157.	87-107 43-125 43-109 56-122 89-101 82-102 87-107 43-125 43-109 56-122 89-101 82-102
	r L/5. L/5. L/10. L/10. L/5. r L/5. r L/5. L/5.	Sample	Sample Found Spike Level Spike Found 0.66 0.25 0.91 19. 10. 29. 0.4 2.5 3.1 0.5 1.0 1.6 L/0.5 2.5 1.9 150. 100. 240. L/0.1 0.8 0.7 L/0.1 0.8 0.8 L/0.5 3.3 3.9 L/5. 333. 350. L/5. 333. 376. L/5. 333. 360. L/5. 333. 523. L/5. 333. 529. L/5. 333. 529. L/5. 333. 519. L/5. 333. 513. L/5. 333. 523. L/5. 333. 513. L/5. 333. 523.	Sample Found Spike Level Spike Found % Recovery 0.66 0.25 0.91 100. 19. 10. 29. 100. 0.4 2.5 3.1 104. 0.5 1.0 1.6 110. L/0.5 2.5 1.9 76. 150. 100. 240. 90. L/0.1 0.8 0.7 88. L/0.1 0.8 0.8 100. L/0.5 3.3 3.9 118. L/5. 333. 376. 113. L/5. 333. 376. 113. L/10. 333. 376. 113. L/5. 333. 376. 114. L/5. 333. 380. 114. L/5. 333. 523. 157. 156. L/5. 333. 519. 156. L/5. 333. 519. 156. L/5. 333. 519. 154. L/5. 333. 517. 157

E.P. TOXICITY ANALYSES

parts per million (mg/l	parts per mill	ion (mq/L)
-------------------------	----------------	-------	------	---

36	Cadmium	L/0.02	1.0	0.98	98.	*
36	Chromium	L/0.1	1.0	1.0	100.	
36	Lead	L/0.2	5.0	5.0	100.	
1.00		-/0.2	5.0	5.0	100.	

Certificate

Chemistry, Microbiology, and Technical Services

PAGE NO.

25

Port of Seattle

LABORATORY NO.

85194

			mg/L			
		Sample	Spike	Spike	%	Control
Sample #	Analyte	Found	Level	Found	Recovery	Limit
36	Silver	L/0.1	1.0	0.9	90.	*
36	Barium	L/0.5	10.0	11.1	110.	*
36	Mercury	L/0.005	0.010	0.011	110.	*
36	Arsenic	L/0.005	0.25	0.22	88.	*
36	Selenium	L/0.005	0.25	0.28	112.	*
42 Spk. 1	Endrin	L/0.0002	0.004	0.00106	46.4	89-101
42 Spk. 11	Endrin	L/0.0002	0.004	0.00162	40.4	89-101
29 Spk. I	2,4-D	L/0.005	0.016	0.0110	68.8	*
29 Spk. I	2,4,5-TP	L/0.005	L/0.016	L/0.0110	68.8	*
29 Spk. 11	2,4-D	L/0.005	0.0160	0.0123	76.6	*
29 Spk. 11	2,4,5-TP	L/0.002	0.0080	0.00623	77.9	*
BULK SAMPL	E ANALYSES					
42	Oil & Grease	0.21	1.22	1.38	96.	*

The control limits are a statistically derived measure of the level of confidence in the measurement. These control limits determine the range within which the analytical value will fall 95% of the time.

^{*} No control limits yet established.

^{**} POS sample was spiked too low for observable recovery. Another sample which was run concurrently was spiked appropriately and the results reported here.

^{() =} absolute

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

26

LABORATORY NO.

85194

Port of Seattle

APPENDIX D

Base Acid Neutral Spike Recoveries

Sample 36 was spiked twice with two different aliquots (22.45 gm) with 1000 ul of 157-3 @ 200 ug/ml. (8.9 ug/gm).

Compounds	MS % Recovery	DS % Recovery	% Deviation
1,2,4-Trichlorobenzene	98.5	101.5	-2.9
Acenaphthene	103.1	98.9	4.1
2,4-Dinitrotoluene	75.6	69.1	9.0
Di-n-butylphthalate	109.8	91.2	18.4
Pyrene	101.1	89.7	11.9
N-initroso-di-N-propylamine	110.3	113.6	-3.2
1,4-Dichlorobenzene	86.8	89.6	-3.2
Pentachlorophenol	26.5	42.9	-47.2
Pheno1	99.3	100.8	-1.5
2-Chlorophenol	100.4	102.0	-1.6
p-Chloro-m-cresol	69.3	68.1	1.7
4-NITROPHENOL	90.1	90.4	-0.3

Chemistry Microbiology, and Technical Services

PAGE NO. 27

Port of Seattle

LABORATORY NO. 85194

APPENDIX F

Comments on Limits of Detection

The laboratory makes every effort to meet the lower limits of detection (LLDs) requested. In some cases, LLDs are elevated due to interferences.

The primary cause of elevated LLDs is sample matrix. Detector response to sample matrix may be determined to be interference, rather than, in this case, pesticides through analytical interpretation. This interpretation will take into account lack of confirmation by a second chromatogram, poor peak shape, interference from a multiple component chemical (i.e., PCBs), etc.

The final result of the interference is that the pesticide cannot be "seen" down to the level which would be achieveable without that interference.

Attached are copies of chromatograms for both a mixed pesticide standard and a PCB Arochlor 1260 standard. From reviewing both chromatograms, it can be seen that presence of PCBs in the sample would make it impossible to "read" the presence of pesticides below the level reported to you.

Certificate

Chemistry Microbiology, and Technical Services

CLIENT Port of Seattle

P.O. Box 2309

Seattle, WA 98111

ATTN: Doug Hotchkiss

REPORT ON SPOILS

LABORATORY NO. 86772

DATE Oct. 31, 1984

PO # P-03613

SAMPLE IDENTIFICATION

Samples which were on hold were released for analysis on Sept. 21, 1984. Samples were assigned new laboratory number 86772-1/9. Samples had previously been identified by Laucks Testing Laboratories and Hart Crowser & Associates as shown below:

TESTS PERFORMED AND RESULTS:

1) 85194-37 1351 2) 85194-38 1352 3) 85194-11 1352B 4) 85194-12 1353 5) 85194-30 1054 6) 85194-33 953 7) 85194-34 954 8) 85194-19 752 9) 85194-20 753		LTL #	HC #
	3) 4) 5) 6) 7) 8)	85194-38 85194-11 85194-12 85194-30 85194-33 85194-34 85194-19	1352 1352B 1353 1054 953 954 752

Three composite samples were created by homogeneously mixing equal weight portions from the indicated samples.

Composite A: Samples 1, 2 above Composite B: Samples 3, 4 above Composite C: Samples 6, 7 above

Samples 5, 8, and 9 were analyzed without compositing.

Samples were passed through a No. 10 sieve prior to analysis. Only material passing the sieve was analyzed. Percentages retained were as follow:

	A	B	C	5	8	9
% retained	L/2.	5.	L/2.	L/2.	L/2.	16.
major description		wood				rocks
minor description		rocks				wood

Certificate

Chemistry. Microbiology. and Technical Services

PAGE NO.

2

Port of Seattle

LABORATORY NO. 86772

Routine analyses were then performed on the samples, with results as follow:

	A	B	C	5	8	9			
		<u>%</u>	, as rece	ived basis					
Total Solids	77.8	60.8	69.9	78.3	44.6	53.5			
			%, dr	y basis					
Total Organic Carbon Total Volatile	0.2	4.0	1.5	0.5	3.8	4.0			
Solids Oil & Grease Sulfide as S	1.3 0.07 0.003	7.4 0.88 L/0.001	3.1 0.25 0.002	1.4 0.02 L/0.001	11.5 2.0 0.33	6.6 0.98 0.10			
Grain Size Analysis	Grain Size Analysis								
Sand Silt Clay	90.2 9.8 L/0.1	35.3 46.6 18.1	65.7 27.2 7.1	88.6 9.4 2.0	10.8 70.4 18.8	8.8 60.1 31.1			

Samples were analyzed for priority pollutants in accordance with 40 CFR, part 136, with results as shown below:

Inorganics		parts p	er millior	(mg/kg),	dry basis	
Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium	L/1.	L/1.	L/1.	L/1.	L/1.	L/1.
	3.1	19.	4.0	2.2	23.	15.
	0.16	0.33	0.21	0.13	0.22	0.50
	0.2	3.2	0.5	0.1	7.4	4.8
	15.	49.	18.	10.	110.	92.
	14.	97.	26.	15.	200.	150.
	18.	170.	40.	33.	340.	190.
	0.2	1.1	0.2	L/0.1	1.6	0.9
	9.	36.	20.	10.	61.	92.
	L/0.5	0.5	L/0.5	L/0.5	1.5	0.5

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

Port of Seattle

LABORATORY NO. 86772

	A	B	C	5	8	9
		parts p	er million	(mg/kg),	dry basis	
Silver Thallium Zinc Total Cyanide Total Phenol	0.24 L/1. 38. L/0.10 L/0.15	2.5 L/1. 320. 0.32 L/0.15	0.21 L/1. 80. L/0.10 L/0.15	L/0.05 L/1. 27. L/0.10 L/0.15	3.4 L/1. 700. 0.60 L/0.15	1.9 L/1. 970. 0.24 L/0.15

Volatile Organics	5)	parts p	er billio	n (ug/kg)		Mathad	
	A	B	C	5	8	9	Method Blank
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chlorid Acrolein *Acetone Acrylonitrile *Carbon Disulfide	L/20. 455. L/20. L/10.	L/10. L/10. L/10. L/10. 828. L/20. 939. L/20. L/10.	L/10. L/10. L/10. L/10. 646. L/20. 316. L/20. L/10.	L/10. L/10. L/10. L/10. 394. L/20. 330. L/20. L/10.	L/10. L/10. L/10. L/10. 360. L/20. 334. L/20. L/10.	L/10. L/10. L/10. L/10. 1040. L/20. 313. L/20. L/10.	L/10. L/10. L/10. L/10. tr L/20. 18. L/10. L/10.
1,1-Dichloroethyl1,1-Dichloroethan	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.
trans-1,2-Dichlor	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.
Chloroform *2-Butanone 1,2-Dichloroethan	L/10. L/10. L/10.	L/10. L/10. L/10.	L/10. tr L/10.	L/10. L/10. L/10.	L/10. tr L/10.	L/10. L/10. L/10.	L/10. L/10. L/10.
1,1,1-Trichloroet	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.
*Vinyl Acetate	L/10. L/10.	L/10. L/10.	L/10. tr	L/10. L/10.	L/10. L/10.	L/10. L/10.	L/10. L/10.
Bromodichlorometh	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.

This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Certificate

Chemistry. Microbiology. and Technical Services

PAGE NO.

Port of Seattle

LABORATORY NO. 86772

	parts per billion (ug/kg)							
	A	B	C	5	8	9	Method <u>Blank</u>	
Carbon Tetrachlor	ide							
1,2-Dichloropropa	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.	
Trichloroethylene Benzene Chlorodibromometh	L/10. L/10. L/10.	L/10. L/10. L/10.	L/10. tr L/10.	L/10. L/10. L/10.	L/10. L/10. L/10.	L/10. L/10. L/10.	L/10. L/10. L/10.	
1,1,2-Trichloroet	L/10. hane	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.	
2-Chloroethyl vin	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.	
Bromoform *4-Methyl-2-penta	L/10. L/10.	L/10. L/10.	L/10. L/10.	L/10. L/10.	L/10. L/10.	L/10. L/10.	L/10. L/10.	
*2-Hexanone 1,1,2,2-Tetrachlor	L/10. L/10.	L/10. L/10.	L/10. L/10.	L/10. L/10.	L/10. L/10.	L/10. L/10.	tr tr	
Tetrachloroethyle	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.	L/10.	
Toluene Chlorobenzene trans-1,3-Dichloro	L/10. L/10. L/10.	L/10. L/10. L/10.	L/10. L/10. L/10.	L/10. L/10. L/10.	L/10. tr L/10.	L/10. L/10. L/10.	L/10. L/10. L/10.	
Ethylbenzene cis-1,3-Dichloropa	L/10. L/10.	L/10. L/10.	L/10. L/10.	L/10. L/10.	L/10. L/10.	L/10. L/10.	L/10. L/10.	
Styrene o-Xylene	L/10. L/10. L/10.	L/10. L/10. L/10.	L/10. L/10. L/10.	L/10. L/10. L/10.	L/10. L/10. L/10.	L/10. L/10. L/10.	L/10. L/10. L/10.	

tr = 1-10 ug/kg

Certificate

Chemistry. Microbiology. and Technical Services

PAGE NO.

Port of Seattle

LABORATORY NO. 86772

Extractables (by GC/N	MS)		parts	per bill	ion (ug/k	g)	
	A	B	C	5	8	9	Method Blank
	100. L/	′100. I	L/100.	L/100.	L/100.	L/100.	L/100.
2-Chlorophenol L/1	100. L/ 100. L/	100.	L/100.	L/100. L/100. L/100.	L/100. L/100. L/100.	L/100. L/100. L/100.	L/100. L/100. L/100.
	100. L/	100. I	L/100.	L/100.	L/100.	L/100.	L/100.
.5.	100. L/	100. l	L/100.	L/100.	L/100.	L/100.	L/100.
L/1	100. L/	100. l	L/100.	L/100.	L/100.	L/100.	L/100.
	100. L/				L/100. L/100.	L/100. L/100.	L/100. L/100.
Nitrobenzene L/1 Isophorone L/1	100. L/ 100. L/	100. L	_/100. _/100.	L/100. L/100.	L/100. L/100. L/100. L/100.	L/100. L/100. L/100. L/100.	L/100. L/100. L/100. L/100.
		100.	_/100.	L/100.	L/100.	L/100.	L/100.
		100. L	_/100.	L/100.	L/100.	L/100.	L/100.
		100. L	/100.	L/100.	L/100.	L/100.	L/100.
L/1	.00. L/	100. L 380.	_/100. tr	L/100. tr	L/100. 190.	L/100. 280.	L/100. L/100.
	.00. L/	100. L	/100.	L/100.	L/100.	L/100.	L/100.
	.00. L/	100. L	/100.	L/100.	L/100.	L/100.	L/100.
		100. L	/100.	L/100.	L/100.	L/100.	L/100.

Certificate

Chemistry. Microbiology. and Technical Services

PAGE NO.

Port of Seattle

LABORATORY NO. 86772

	parts per billion (ug/kg)						
	A	B	C	5	8	_ 9	Method <u>Blank</u>
2,4,6-Trichloroph							
2-Chloronaphthale	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.
Acenaphthylene Dimethylphthalate	L/100. L/100.	L/100. L/100.	L/100. L/100.	L/100. L/100.	L/100. 160.	L/100. L/100.	L/100. L/100.
2,6-Dinitrotoluen	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.
Acenaphthene 2,4-Dinitrophenol	L/100. L/100.	L/100. L/100.	L/100. L/100.	L/100. L/100.	L/100. 120.	L/100. 490.	L/100. L/100.
2,4-Dinitrotoluen	L/100. e	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.
4-Nitrophenol Fluorene	L/100. L/100. L/100. enyl ethe	L/100. L/100. 210.	L/100. L/100. L/100.	L/100. L/100. L/100.	L/100. L/100. 130.	L/100. L/100. 590.	L/100. L/100. L/100.
Diethylphthalate 4,6-Dinitro-o-cre	L/100. L/100.	L/100. L/100.	L/100. L/100.	L/100. L/100.	L/100. L/100.	L/100. L/100.	L/100. L/100.
1,2-Diphenylhydra	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.
4-Bromophenyl pher	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.
Hexachlorobenzene	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.
Pentachlorophenol	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.
Phenanthrene Anthracene Dibutylphthalate Fluoranthene	L/100. 150. 100. L/100. 480.	L/100. 910. 1180. L/100. 5950.	L/100. 200. 240. L/100. 520.	L/100. L/100. L/100. L/100. L/100.	L/100. 580. 880. L/100. 6370.	L/100. 1620. 650. L/100. 3910.	L/100. L/100. L/100. L/100. L/100.

Pyrene

Benzidine

L/100.

330.

L/100.

L/100.

3790.

L/100.

2560.

L/100.

L/100.

340.

L/100.

5580.

L/100.

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

Port of Seattle

LABORATORY NO. 87662

		parts per billion (ug/kg)							
	A	B	C	5	8	9	Method Blank		
Butyl benzyl phth	nalate L/100.	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.		
Benzo(a)anthracer Chrysene 3,3'-Dichlorobenz	180. 200.	2110. 2200.	140. 160.	L/100. L/100.	1570. 1620.	1040.	L/100. L/100. L/100.		
Bis(2-ethylhexyl)	L/100. phthalate		L/100.	L/100.	L/100.	L/100.	L/100.		
N-nitrosodiphenyl	2390. amine	2550.	780.	460.	4760.	L/100.	L/100.		
Di-n-octyl phthal	L/100. ate	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.		
Benzo(b)fluoranth	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.		
Benzo(k)fluoranth	320.	2200.	160. **	L/100. **	2330.	1270.	L/100.		
Benzo(a)pyrene Indeno(1,2,3-cd)p	260.	1580.	360.	L/100.	1480.	1180.	L/100.		
Dibenzo(ah)anthra	L/100.	630.	L/100.	L/100.	L/100.	L/100.	L/100.		
Benzo(ghi)perylen	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.		
2,3,7,8-Tetrachlo p-dioxin (TCDD)	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.		
*Aniline *Benzoic Acid *Benzyl Alcohol *4-Chloroaniline *Dibenzofuran *2-Methylnaphthal	L/100. L/100. L/100. L/100. L/100. L/100. ene	L/100. L/100. L/100. L/100. L/100. L/100.	L/100. L/100. L/100. L/100. L/100. L/100.	L/100. L/100. L/100. L/100. L/100. L/100.	L/100. L/100. L/100. L/100. L/100. L/100.	L/100. L/100. L/100. L/100. L/100. L/100.	L/100. L/100. L/100. L/100. L/100. L/100.		
*2-Methylphenol *4-Methylphenol	L/100. L/100. L/100.	L/100. L/100. L/100.	L/100. L/100. L/100.	L/100. L/100. L/100.	110. L/100. L/100.	L/100. L/100. L/100.	L/100. L/100. L/100.		

Certificate

Chemistry Microbiology, and Technical Services

PAGE	NO.	8
MOL	140.	\circ

Port of Seattle

LABORATORY NO. 86772

		parts per billion (ug/kg)								
	A	B	C	5	8	9	Method <u>Blank</u>			
*2-Nitroaniline *3-Nitroaniline *4-Nitroaniline *2,4,5-Trichloro	L/100.	L/100. L/100. L/100.		L/100. L/100. L/100.	L/100. L/100. L/100.	L/100. L/100. L/100.	L/100. L/100. L/100.			
	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.	L/100.			

 $tr = 50-100 \, ug/kg$

		B	C	5	8	9
Pesticides (by GC/	ECD)	<u>p</u>	arts per	billion (ug/kg)	
alpha-BHC beta-BHC delta-BHC gamma-BHC (lindane		L/1. L/1. L/1.	L/1. L/1. L/1.	L/1. L/1. L/1.	L/1. L/1. L/1.	L/1. L/1. L/1.
heptachlor aldrin heptachlor epoxide dieldrin 4,4'-DDE 4,4'-DDD endosulfan sulfate 4,4'-DDT chlordane alpha endosulfan beta endosulfan endrin endrin aldehyde toxaphene	L/1. L/1. L/1. L/1. L/1. L/1.	L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1.	L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1.	L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1.	L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1.	L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1.

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO.

PAGE NO.

LABORATORY NO. 86772

Port of Seattle

	A	B	C	5	8	9
]	parts per	billion (ug/kg)	
PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1248 PCB 1254 PCB 1260	L/20. L/20. L/20. L/20. L/20. L/20. 66.	L/20. L/20. L/20. L/20. L/20. L/20. 120.	L/20. L/20. L/20. L/20. L/20. L/20. L/20.	L/20. L/20. L/20. L/20. L/20. L/20. L/20.	L/20. L/20. L/20. L/20. L/20. L/20. 140.	L/20. L/20. L/20. L/20. L/20. L/20. 150.

Key

L/ indicates "less than".

* Additional compounds from the EPA's Hazardous Substances List.

Respectfully submitted,

Laucks Testing Laboratories, Inc.

.M. Owens

JMO: veg

^{**} Value shown for Benzo(b)fluoranthene is the sum of the isomers Benzo(b)fluoranthene and Benzo(k)fluoranthene.

Chemistry. Microbiology. and Technical Services

PAGE NO.

10

Port of Seattle

LABORATORY NO. 86772

APPENDIX A

Replicate Quality Control Report

Inorganics

Sample	Analyte	Replicate 1	Replicate 2	Relative Error
		%		
А	Total Solids	77.8	77.6	0.2
		%, dry	basis	
A 8	Volatile Solids Total Organic	1.3	1.3	0.
9	Carbon Oil & Grease	4.1 0.98	3.8 0.81	7.3 17.
8	Sulfide as S	0.33	0.19	42.
8	Sand Silt	10.8 70.4	9.4 67.7	13. 3.8
8	Clay	18.8	22.9	18.

Lauces Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206) 767-5060

Chemistry, Microbiology, and Technical Services

PAGE NO.

11

Port of Seattle

LABORATORY NO. 86772

<u>Sample</u>	<u>Analyte</u>	Replicate 1	Replicate 2	Relative Error
		parts per million (mg/kg), dry basis	
C D 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Cyanide Mercury Nickel Zinc Chromium Arsenic Copper Lead Cadmium Thallium Selenium Phenol Beryllium Antimony Silver	L/0.10 0.2 92. 970. 92. 15. 150. 190. 4.8 L/1. 0.5 L/0.15 0.50 L/1. 1.9	L/0.10 0.2 88. 1000. 92. 15. 160. 220. 5.4 L/1. 0.5 L/0.15 0.44 L/1. 1.0	0. 0. 4.3 3.0 0. 0. 6.2 14. 11. (0.) (0.) 0. 2. (0.)

⁽⁾ indicates absolute error

L/ indicates "less than"

Chemistry Microbiology, and Technical Services

PAGE NO.

12

Port of Seattle

LABORATORY NO. 86772

APPENDIX B

Spike Quality Control Report

Inorganics

<u>Sample</u>	Analyte	Sample Found	Spike Level	Spike Found	% Recovery
		****	%, dry basis		
А	Oil & Grease	0.07	1.24	1.32	101.
		parts per mi	illion (mg/kg), dry basis	
C C 9 9 9 9 9 9 9 B 9 5 9 9 9	Mercury Cyanide Cyanide Nickel Zinc Chromium Arsenic Copper Lead Cadmium Thallium Selinium Phenol Beryllium Antimony Silver	0.2 L/0.10 0.24 92. 970. 92. 15. 150. 190. 4.8 L/1. 0.5 L/0.15 0.50 L/1.	0.3 0.98 1.5 100. 250. 100. 20. 200. 110. 11. 2.5 2.0 0.85 0.50 10. 0.96	0.5 0.31 1.4 192. 1230. 196. 33. 350. 310. 15.2 5.4 2.3 0.78 1.00 3.6 2.7	100. 32. 77. 100. 104. 104. 90. 100. 109. 94. 216. 90. 92. 100. 36. 83.

L/ indicates "less than"

Laucks Testing Laboratories, Inc. 940 South Harney Street. Seattle, Washington 98108 (206) 767-5060

Certificate

Chemistry, Microbiology, and Technical Services

PAGE NO.

13

Port of Seattle

LABORATORY NO. 86772

APPENDIX C

Surrogate Recovery Quality Control Report

Listed below are surrogate (chemically similar) compounds utilized in the analysis of volatile and organic compounds. The surrogates are added to every sample prior to extraction and analysis to monitor for matrix effects, purging efficiency, and sample processing errors. The control limits represent the 95% confidence interval established in our laboratory through repetitive analysis of these sample types. In certain cases, we will have accumulated insufficient data to have established control limits.

Sample #	Surrogate Compound	Spike Level	Spike Found	% Recovery	Control Limits
		parts per mil	lion (mg/kg)		
A	d4-1,2-Dichloroethane	0.735	0.761	103.6	50-160
A	d8-Toluene	0.735	0.696	94.7	50-160
A	Bromofluorobenzene	0.735	0.821	111.7	50-160
B	d4-1,2-Dichloroethane	0.698	0.553	79.2	50-160
B	d8-Toluene	0.698	0.685	98.2	50-160
B	Bromofluorobenzene	0.698	0.808	115.8	50-160
C	d4-1,2-Dichloroethane	0.676	0.633	93.6	50-160
C	d8-Toluene	0.676	0.677	100.1	50-160
C	Bromofluorobenzene	0.676	0.779	115.2	50-160
Blank	d4-1,2-Dichloroethane	0.050	0.0496	99.3	50-160
Blank	d8-Toluene	0.050	0.0501	100.1	50-160
Blank	Bromofluorobenzene	0.050	0.0550	109.9	50-160
Spike	d4-1,2-Dichloroethane	0.370	0.382	103.3	50-160
Spike	d8-Toluene	0.370	0.355	95.9	50-160
Spike	Bromofluorobenzene	0.370	0.391	105.8	50-160
Dupe	d4-1,2-Dichloroethane	0.368	0.370	100.6	50-160
Dupe	d8-Toluene	0.368	0.345	93.8	50-160
Dupe	Bromofluorobenzene	0.368	0.396	107.5	50-160

This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO. 14

Port of Seattle

LABORATORY NO. 86772

Sample	#_	Surrogate Compound	Spike Level	Spike Found	% Recovery	Control Limits
			parts per m	illion (mg/kg)		
5 5 5		d4-1,2-Dichloroethane d8-Toluene Bromofluorobenzene	0.372 0.372 0.372	0.360 0.368 0.409	96.7 98.9 110.0	50-160 50-160 50-160
8 8 8		d4-1,2-Dichloroethane d8-Toluene Bromofluorobenzene	0.865 0.865 0.865	0.870 0.886 0.976	100.6 102.4 112.8	50-160 50-160 50-160
9 9 9		d4-1,2-Dichloroethane d8-Toluene Bromofluorobenzene	0.700 0.700 0.700	0.734 0.648 0.768	104.8 92.6 109.7	50-160 50-160 50-160
			parts per b	illion (ug/kg)		
A A A A A A		2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl	4096. 4224. 4000. 4000. 4224. 4000. 4000.	3328. 1042. 2645. 2552. 2915. 3188. 1496. 2920.	81.2 24.7 66.1 63.8 69.0 79.7 37.4 73.0	24-133 20-122 20-140 20-140 10-114 20-150
B B B B B B		2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl	4096. 4224. 4000. 4000. 4224. 4000. 4000.	3002. 1049. 2456. 2616. 2581. 3292. 2512. 3468.	73.3 24.8 61.4 65.4 61.1 82.3 62.8 86.7	24-133 20-122 20-140 20-140 10-114 20-150

Testing Laboratories, Inc. 940 South Harney Street. Seattle, Washington 98108 (206) 767-5060

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO. 15

Port of Seattle

LABORATORY NO. 86772

Sample #	Surrogate Compound	Spike Level	Spike Found	% Recovery	Control Limits
		parts per b	illion (ug/kg)		
C C C C C C	2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl	4096. 4224. 4000. 4000. 4224. 4000. 4000.	1896. 966. 1547. 1648. 1748. 2376. 1996.	46.3 22.8 38.7 41.2 41.4 59.4 49.9 43.2	24-133 20-122 20-140 20-140 10-114 20-150
5 5 5 5 5 5 5 5 5 5 5	2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl	4096. 4224. 4000. 4000. 4224. 4000. 4000.	3274. 2141. 2748. 2700. 3070. 3416. 2720. 2864.	79.9 50.7 68.7 67.5 72.7 85.4 68.0 71.6	24-133 20-122 20-140 20-140 10-114 20-150
8 8 8 8 8 8	2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl	4096. 4224. 4000. 4000. 4224. 4000. 4000.	2776. 1510. 2296. 2708. 2537. 3036. 2856. 2600.	67.8 35.7 57.4 67.7 60.1 75.9 71.4 65.0	24-133 20-122 20-140 20-140 10-114 20-150
9 9 9 9 9 9 9	2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl	4096. 4224. 4000. 4000. 4224. 4000. 4000.	3338. 1624. 2536. 2664. 2959. 3624. 3032. 3812.	81.5 38.5 63.4 66.6 70.1 90.6 75.8 95.3	24-133 20-122 20-140 20-140 10-114 20-150

This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Laucks Testing Laboratories, Inc. 940 South Harney Street. Seattle. Washington 98108 (206) 767-5060

Certificate

Chemistry. Microbiology, and Technical Services

PAGE NO.

Port of Seattle

LABORATORY NO. 86772

16

Sample #	Surrogate Compound	Spike Level	Spike Found	% Recovery	Control Limits
		parts per b	illion (ug/kg)		
Spike Spike Spike Spike Spike Spike Spike Spike Dupe Dupe Dupe Dupe Dupe Dupe Blank Blank Blank Blank Blank Blank	2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl 2-Fluorophenol 2-Fluoroaniline d5-Phenol 2-Bromophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl 2-Fluoroaniline d5-Phenol 2-Fluorophenol 2-Fluorophenol 2-Fluorophenol 2-Fluorophenol 2-Fluorophenol d5-Nitrobenzene 2-Fluorobiphenyl 2,4,6-Tribromophenol d14-p-Terphenyl	4096. 4224. 4000. 4000. 4000. 4000. 4000. 4000. 4000. 4000. 4000. 4000. 4000. 4000. 4000. 4000. 4000. 4000. 4000. 4000. 4000.	3242. 1710. 3156. 2776. 3105. 3208. 2752. 2824. 3475. 1682. 3173. 2812. 3252. 3383. 2945. 2952. 2858. 2601. 2440. 2229. 2628. 2892. 2211. 2825.	79.2 40.5 78.9 69.4 73.5 80.2 68.8 70.6 84.8 39.8 79.3 77.0 84.6 73.6 73.8 69.8 61.0 55.7 62.2 72.3 55.3 70.6	24-133 20-122 20-140 20-140 10-114 20-150 24-133 20-140 10-114 20-150 24-133 20-122 20-140 10-114 20-150 24-133
A B C 5 8 9 Blank 5 MS 5 MSD	Dibutylchlorendate	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	10.5 4.94 17.2 17.0 4.46 10.9 26.8 15.5 16.9	52.7 24.7 86.1 84.9 22.3 54.3 134. 77.7 84.7	20-150 20-150 20-150 20-150 20-150 20-150 20-150 20-150

Laucks Testing Laboratories, Inc. 940 South Harney Street. Seattle, Washington 98108 (206) 767-5060

Certificate

Chemistry, Microbiology, and Technical Services

PAGE NO.

17

Port of Seattle

LABORATORY NO. 86772

APPENDIX D

Matrix Spike/Duplicate Spike

Quality Control Report

Organics

Reported below are the results of additional QC compounds utilized in the analysis of organic compounds. Compounds of interest are spiked into two additional sample aliquots prior to extraction and/or analysis to monitor for matrix effects, sample processing errors, and to calculate percent recoveries of compounds of interest and relative error in the analysis. The control limits represent the 95% confidence interval established in the laboratory through repetitive analysis of samples.

Compound	Conc Spike	Conc Samp	Conc MS	% REC	Conc MSD	% REC	RPD	RPD Limit	REC Limit
1,1-Dichloroethene Trichloroethene	125.	0.	169.	135.	178.	142.	-4.9	22.	59-172
Chlorobenzene	125. 125.	0. 0.	142. 133.	114. 106.	155. 144.	124. 115.	-8.4 -7.6	24. 21.	62-137 60-133
Toluene	125.	0.	142.	114.	148.	118.	-3.8	21.	59-139
Benzene	125.	0.	127.	102.	136.	109.	-6.8	21.	66-142
1,2,4-Trichlorobenzene Acenaphthene	50. 50.	0. 0.	37.1 44.4	74.2 88.8	38.1 44.5	76.2 89.0	-2.6 -0.2	23. 19.	38-107 31-137
2,4-Dinitrotoluene	50.	0.	34.0	68.0	33.8	67.6	0.6	47.	28-89
Di-n-Butylphthalate	50.	0.	42.0	84.0	44.2	88.4	-5.1	47.	29-135
Pyrene N-Nitrosodipropylamine	10. 50.	0. 0.	8.9 45.5	1 89.1 91.0	8.43 45.3	1 84.1 90.6	5.7 0.5	36. 38.	35-142 41-126.
1,4-Dichlorobenzene	50.	0.	37.4	74.8	36.6	73.2	2.1	27.	28-104
Pentachlorophenol	100.	0.	44.3	44.3	46.2	46.2	-4.2	47.	17-109
Phenol 2-Chlorophenol	100. 100.	0. 0.	72.4 70.7	72.4 70.7	71.5	71.5 70.5	1.3	35 50	26-90 25-102
P-Chloro-m-cresol	100.	0.	65.2	65.2	61.2	61.2	0.3 6.3	33.	26-103
4-Nitrophenol	100.	0.	46.2	46.2	40.6	40.6	12.9	50.	11-114

Chemistry. Microbiology. and Technical Services

PAGE NO.

18

Port of Seattle

LABORATORY NO. 86772

Concentrations in the spike, matrix spike and matrix spike duplicate are shown in parts per billion (ug/kg).

Conc = Concentration

Samp = Sample

MS = Matrix Spike

MSD = Matrix Spike Duplicate

REC = Recovery

RPD = Relative Percent Difference

Certificate

Chemistry Microbiology, and Technical Services

PAGE NO

19

Port of Seattle

LABORATORY NO. 86772

APPENDIX E

Spike Quality Control Report

Organics Festicide Fraction

Sample Analyte	Sample Found	Spike Level	Spike Found	% Recovery	Control <u>Limit</u>
	parts per	billion	(ug/kg)		
5 MS Lindane 5 MS Heptachlor 5 MS Aldrin 5 MS Dieldrin 5 MS Endrin 5 MS 4,4'-DDT 5 MSD Lindane 5 MSD Heptachlor 5 MSD Aldrin 5 MSD Dieldrin 5 MSD Dieldrin 5 MSD Endrin 5 MSD Endrin	L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1. L/1.	8.0 8.0 20.4 20. 20.0 8.0 8.0 20.4 20.0	2.65 2.08 4.72 7.4 7.24 14.3 2.12 1.66 8.87 8.61 8.99	33.3 26.0 58.9 36.6 36.2 71.3 26.5 20.7 111. 42.2 45.0	46-127* 35-130* 34-132 31-134 42-139* 23-134 46-127* 35-130* 34-132 31-134 42-139
5 MSD 4,4'-DDT	L/1.	20.0	16.8	83.9	46-127

^{*} Lower than normal recoveries may sometimes be attributable to sample matrix effects. Specifically, sulfur may cause supression of the compound signals. Sulfur was recognized as present in the sample residue matrix, and clean-up steps were taken to a leviate the problem.

MILOL T-91 DONOR SITES , SHILSHOLE & T-91 MITIGATION

BORING	SAMPLE	DEPTH RANGE(ft)	0.000000	3 #	AMPHI BIOAS	SSAY # SURVIVE		PCBs		DDTs			W PAHs				R DATA	
			LK	EVS	P/F	/std dev	P/F:Met.F	P/F	(ppb)	P/F	(ppb)	P/I	F (ppb)	P/F	(ppb)	(0&6	i=011 &	grease)
SHILSHOLE MAINT	E 1,2,3,4	0-3.5	Α	Α	P	19.4/0.5	Р	P	(nd)	P	(nd)	P	(68)	P	(nd)	0&G	(nd)	
T-115	5,22	0-5	В	В	Р	15.2/2.6	F:As,Cd,Cu	ı P	(320)	F	(47)	F	(3530)	Р	(12410)	0&G	0.32%	
MAINT	6,23	5-9	C	С	Р	19/1.2	Р	P	(nd)	Р	(nd)	P	(410)	P	(1300)	0&G	0.02%	
T-115	7,9	0-5	D	D	Р	18/0.7	F: Hg	Р	(160)	P	(3)	P	(560)	Р	(4450)	0&G	0.16%	
S.F.	8,10	5-9	E	Е	Р	18/1.2	P	Р	(nd)	Р	(1)	P	(nd)	P	(260)	O&G	0.16%	
T-105 MAINT	20.21	0-3.5	I	I	Р	18/2	F:As,Cd,Cu Pb,Zn	ı P	(640)	F	(20)	F	(2570)	F	(13910)	0&G	0.49%	
T-91	18,19	6-12	н	Н	P	15.6/2.6	F:Pb	P	(630)	P	(6)	F(24920)	F(46310)	0&G	0.42%	
MAINT	17	0-6	17	17	F	11.4/3.3	F;Cd,Cu,Pb Zn	P	(190)	F	(67)	F(28100)	F(67950)	0&G	1.5%	
T-91	11,14	0-6	F	F	Р	18.6/0.5	Р	Р	(nd)	Р	(nd)	P	(nd)	P	(nd)	0&G	(nd)	
MITIG	12,13 15	5-15	G	G	Р	15.4/1.7	P	P	(nd)	Р	(nd)	P	(nd)	P	(70)	0&G	0.02%	
	16	15-18	16	16	P	19/0.7	P	Р	(nd)	P	(nd)	P	(nd)	P(3550)	O&G	0.03%	

Minn Dower Sites

Terminal 91, Short Fill Source Sampling Sampling Schedule

Table 1

Location	Anticipated Dredge Quantity	No. of Sampling Borings	Total No. of Samples
T91 Mitigation Cut Area	13,000 c.y.	2	6
T91, Pier 90E Maint. Dredging	4,000 c.y.	1	3
T115 Maint. Dredging	11,000 c.y.	2	4
T115 SeaFreeze Maint. Dredging	5,300 c.y.	2	4
T105 Maint. Dredging	3,000 c.y.	1	2
SBM Maint. Dredging	1,700 c.y.	4	1 .

GL:pjn/3713E

D

Athis Makeriel was cleaner so it went on top as a part of the cap

000 Re: Port of Seattle 89906 Date: June 11, 1985

The last of the samples for this job were rec'd 6/10/85.

The compositing scheme is as follows:

							AIN	_				
Composite A: Cons	sists of sample	s 1,2,3, <u>4</u>	Shilsh	ole				- u	- P 1	_	LoPAH 80	7
Composite B: Con			T-115	Maut.	0-5	47	1.2	160	160	-	3500 4	7
Composite C: Cons	sists of sample	s 6,23	T-115		5-9	Her				-		
Composite D: Con	sists of sample	s 7,9	T-115	S.F.		1.6				-		
Composite E: Con	sists of sample	8,10		5.F	5-9	LOW-I				_		
Composite F: Con	sists of sample	s 11,14	T- 91	Mit	0-6					_		
Composite G: Con	sists of sample	s 12,13,15		M,T	5-15	04	1 - PAH	H: PAU				
Composite H: Con	sists of sample	s 18,19	T-91	Maint	6-12	160	25, ar	46,000		3 ~	LO PATH	
Composite I: Con	sists of sample	s 20,21	T-105	Maint	9-32	44	1.1	200	330	850	2,600 13,90	
Sample #16 to be	analyzed singly	, uncomposi	ited T-91	Mit	15-18			1 1		- 1		01
Sample #17 to be	analyzed singly	, uncomposi	ted T-9	1 Maint	0-6	1.9	130	300	550	28,00	68,000 6	7 10

11:1 Clean

Each sample consists of the following: two 1-qt jars; one bag; I horse cup for sulfide.

Composite A has already been created and currently resides in the walk-in.

We need to deliver the sample splits for amphipod bioassay tomorrow (early as possible) to EVS. We would like to deliver a minimum of one liter; they prefer to have two. The samples for delivery should be given to the office cooled, in an ice chest.

This described the compositing. See attached for individual sample ID.

No.89906 ENTRY FORM Port of Seattle 524 AFRO
PROM. DATE EST. DATE MICRO. ATTN. ☐ REQ'D. ☐ NOT REQ'D. REMARKS 5/24 Dong will advise compositing on 5/08. or matinal will be too all LAB NO. SAMPLE DESIGNATION ANALYSIS Port of Seattle Shilshole - Boring WHI Site JTK 5-23-85 1500 WDE CODE NO. NOTES TO THE LAB **AMOUNT** FIGURE BILL CAT. CODE ANALYST CHECKER TOTAL COMP. DATE ADV. PAYMENT No. 89906 **ANALYSIS** METHOD NO. UNIT LLD

Pos # 89906 OKIL 6-13

	703	0 11	0	776	10			200 H		
	1	2	3	4	5	6	7	8	9	
. 1	Grains	īze	A	B		<u>D</u>	E	F	6	i j
2	Sand		93.7	14.8	89.D	47.7	72.7	55.8	53.7	448
3	Jie		5.0	74.3	10.4	45.1	25.7	37.6	40.0	
2.50	Clay		1.3	10.9	. le	7.2	1.6	6.6	6.3	
₹ 5 ₩	0									
907-25-506 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			#	I	16_	17_				
J Z	Sand	lim		17.3	89,5	67.4				
8 FF	silt	MILLE		69.9	10.5	30.1				2
6	Clay	Softwar 19		12.8	ND	2.5				清
10	0	1/11	_							
11										
12	11	4-	A	B	C	2	E	F	6	
13	H # 7		MD	NO					\Rightarrow	
14										
15			<u>H</u>	I	16	_17				
16	##*		No	2400 NO	46	ND 1				
17				NO	(hD	-	Lugu /	1/2/3		
18	# 0.14					Find				**************************************
19	TNAS	are be	ing pers	formed.					7 11 2 2	5
20							· · · · · · · · · · · · · · · · · · ·			**
21										+ 4 · 4
23										
24										
25										
26									- 200	-
27							-		*	
28										-
29			aw there are							
30								7/2		
31	_		and the second second second			25.4	,			
	11						4.5			

T.

		in our					
		ana iy					

			16	
				W. Alexander
			- 2 Set	
		STATE AND ADDRESS NO. OF THE PARTY AND ADDRESS	MANAGEMENT WON THE STATE OF THE	THE RESERVED TO SERVED ASSESSMENT TO SERVE TO
्रातिक संस्थान	ar in the second			
			Server of the server of	

College of the second college of the second

,	第二三年40 0年	and the same of		
			The second liver with	
		n service de la company		
	Constant			
			<u>ula de de a est</u>	

1			
	Control of the Contro	ALXX	
COLERCIA DE LA COLOR DE LA		+1 //	
	Section 1		
LESS COMMENTE AND LESS COMMENTS		4. 医心理	

Copper Chroman

ALLE STATE OF THE STATE OF THE

	resile Big
King and the second	
A. V. Landardon	
	Charles and the State of Control

		等数数		412 75	
	Marian Caranta				
7)					
			Take the second		
			or the second		
		Total Control			

INORGANIC PRIORITY POLLUTANT DATA SHEET

Lab No. <u>\$9906</u>
Client <u>Pos</u>
Rec'd <u>6-13 ok'</u>
Due
Analyst _____

Full metal scan
Partial scan (check metals of interest)

Reporting units: mg/Kg Ory

_					Samp	le Numb	per						
	/		A	B	C	λ	E	F	6	H	Blank	LLD	Minimum Acceptable LLD
V		Antimony	ND	2	NO	ND	1.5	UD.	ND	ND		2	LLD
1		Arsenic	3,0	47	5,6	14	3,5	5.0	4,0	4,0			1 0000
1		Beryllium	1,28	1.3	132	,81	1.2	.7		.38			1 ppm
1		Cadmium	0.1	1.2	0,2	0.6	<i>3</i> 5	3.1	0.1	0.8			0.1 pm
1		Chromium	20	4/0	25	25	6.9	35	35	25		¥ .	1/2-1
1		Copper	8	160	39	60	36	23	10.	30		178y	1 0 - 11
1		Lead	4	160	17	80	37	12	17	160		_	1 404
1		Mercury	ND	0.3	ND	1.6	1.2	0.1	0.1	0.7		re,	1 ppm 0.1 ppm
1		Nickel	30	25	25	15	<i>§</i> 0	= 1	45	30	300 110 B, 3 11		or por
1		Selenium	NO	NO	Nio	ND	1.0	1. 3	N_	M		,5	
1		Silver	28	14	4	1,4	٠.٠	/	. 1	,7	17		
1		Thallium	1000	150	NO.	JO	C1,	.dei	٨٦	an		1	
1		Zinc	33	445	140	الاعا	, 5,	<i>=</i> 3		210			1 ppm
1		Total Cyanide	an								<.005"%	.5	- Free Contract Contr
1	1	Total Phenol	NO-		. 10	28				. (<.005 mg/	۵.	
L	1												
L	1												
L			<mark>14 1</mark> 1	1	- <u>- </u>								mary Mr. o
													Marie

INORGANIC PRIORITY POLLUTANT DATA SHEET

Lab No.	89	906
Client	·P	25
Rec'd	or d	6-13
Due		
Analyst		
Chkd		

N	Full met	tal so	an			
	Partial	scan	(check	metals	of	interest)

Reporting units:

				Samp1	e Numb	er				Minimum Acceptable LLD
V		I	16	17				Blank	LLD	1460
L	Antimony	5	ND	2						
1	Arsenic	44	3,0	10						1 ppm
L	Beryllium	1.3	,32							//
1	Cadmium	1./	0.2	1,9						0.1 ppm
L	Chromium	65	80	60						,,
1	Copper	200	12	130						1 ppm
L	Lead	330	18	300						1 ppm
1	Mercury	0.4	0.1	0.7						1 ppm 0.1 ppm
1	Nickel	35	25	40						
Ł	Selenium	ND	MD	ND	ml'				.5	
Ł	Silver	1.6	13	1,7						
	Thallium	ND	ND	ND						
	Zinc	850	37	550						1 ppm
L	Total Cyanide	NO .		>					.5	
1	Total Phenol	ND-		>					,5	
L	1 2 2				11					
L										
L										

WOLAT!	ILE	ORGANICS	DATA	SHEET	
-					

Full Priority Pollutant Scand
Partial Scan (check compounds of interest)

Lab No. 89906
Date Rec'd OK'd 6-13
Client Pos
Date of Analysis 6/25-6/27
Analyst KUDeb Check RAC
Duo Data

		_		1		+	-	+		Field	
	ANALYTE	A	-	8	C	3	E	F	6	Blank	LLD
	Chloromethane	<5	5	≺ 5	< 5	<5	<5	×5	~ 5	</td <td>15</td>	15
	Bromomethane		1		1		1	1	1	1	
_	Vinyl Chloride	1	_			++-	+				
	Chloroethane	\		1	0	1	 \	 \	1	V	
	Methylene Chloride	36		840	2/0	240	150	110	92	20	V
	Acrolein	<5		<50	450	₹50	₹50	₹50	<50	Z10	-Fo
7	Acetone	27		3000	940	840	440	61	65	18	<50
	Acrylonitrile	< 5		₹50	250	₹50	150	<50	∠5°U		45
	Carbon Disulfide	14		<5	₹ 5	-5	75	15	45	<10 <1	550
	1,1-Dichloroethylene			1	1	1	1	1	-5	-1	-5
	1,1-Dichloroethane							 	\vdash		-
	trans-1,2-Dichloroethylene		,	1	1		 	1	-		_
	Chloroform	12)	33	14	16	++-	15	10		
	2-Butanone	7		15	<5	<5	+	15	12		
	1,2-Dichloroethane			1	-3	1 3	-	25	-2		_
\dashv	1,1,1-Trichloroethane	\vdash				+	 	++-	-		
\dashv	Carbon Tetrachloride					+					
-	Vinyl Acetate	\vdash			 	++-	 	\vdash			
-	Bromodichloromethane	\vdash				+	-	\vdash			
\dashv	Carbon Tetrachloride					++-	-	-	\vdash		
\dashv	1,2-Dichloropropane			 	\vdash	++	+-		-		
	Trichloroethylene				 	++-	-		-		
	Benzene	\vdash			-	+-		-	 		\rightarrow
	Chlorodibromomethane	\vdash			-	+	\vdash	1			
	1,1,2-Trichloroethane				-	+	\vdash	 			
+	2-Chloroethyl vinyl ether	H				+	-	-			_
7	Bromoform	\vdash					 	1.1			
7	4-Methy1-2-pentanone	\vdash					1	 	-		
7	2-Hexanone	H			-	++-	+				
	1,1,2,2-Tetrachloroethane	\vdash				++-	+	-			_
7	Tetrachloroethylene	\vdash				+		+			
7	Toluene	\vdash	_			++-	+	+	-		
7	Chlorobenzene	H				+	-	+	\vdash		
7	trans-1,3-Dichloropropene	\vdash				+		+	\vdash		
7	Ethylbenzene	\vdash				+-		+	++-		-
+	cis-1,3-Dichloropropene	\vdash				+		+	+-		
1	Styrene	\vdash				+	+	 -	\vdash		
	o-Xylene	1	,	1	 \	+ 4		1	+	 	-
	**	-			<u> </u>	+	 	+	-	V	
7	*					 	1	-	-		
7	*	-				+	 	+	-		
+	*	-				+	+	+	-		

^{*}Additional compounds from the EPA's Hazardous Substances List **Other compounds of interest identified, in estimated amounts.

Note on report: "Samples analyzed for priority pollutants in accordance with 40 CFR, Part 136, with results as shown below:

WOLATILE ORGANICS DATA SHEET

UNITS OF REPORTED VALUES welk;
Full Priority Pollutant Scan
Partial Scan (check compounds of interest)

Lab No.	8990	6
Date Rec'd	OKIL	6-13
Client	POS	
Date of Ana	lysis	6/25 -6/27
Analyst KL/	Deb Che	eck Blac
Due Date		

	ANALYTE	#	I	16	17	DUP	Meth	Meth Blank	LLD
	Chloromethane	15	45	< 5	< 5	45	<1	<1	<5
	Bromomethane	1	1	1	1	1	1		- 1
	Vinyl Chloride					+++	\rightarrow	 	
	Chloroethane	1	14	1	1		- 1 - 1	1	
	Methylene Chloride	150	240	130	360	210	14		
	Acrolein	₹50	<50	<50	<50	150	<10	trace <10	
	Acetone	1200	3600	450	1800		17	14	<50
	Acrylonitrile	₹50	450	450	<50			4/0	25
	Carbon Disulfide	25	45	₹5	75		<10 41	Z1	<50
	1,1-Dichloroethylene	Ī	1	1	1	17	121	21	~5
	1,1-Dichloroethane								
	trans-1,2-Dichloroethylene	V	1		 \		-+-		
	Chloroform	42	51		69	26	-+-		
	2-Butanone	25	145	1.	<5	25			
	1,2-Dichloroethane	1	1		1	100	-		
	1,1,1-Trichloroethane				++-	1-1-	-+-		
\neg	Carbon Tetrachloride					+++	$\overline{}$		
	Vinyl Acetate				1		$\overline{}$		
	Bromodichloromethane				1-1-	+++	-+-		
	Carbon Tetrachloride	\			1	+++	-+-		
	1,2-Dichloropropane	₩	1		1	141	-+-		
	Trichloroethylene	17	16		14	5	-+-		
7	Benzene	<5	25		<5	<5			
	Chlorodibromomethane	1	1		1 25	1 7			
	1,1,2-Trichloroethane				+-	 			
\neg	2-Chloroethyl vinyl ether				 	 			
1	Bromoform		1-1-	 		 			_
	4-Methyl-2-pentanone				\vdash	 			
	2-Hexanone		1		\vdash	 			
7	1,1,2,2-Tetrachloroethane				_				
1	Tetrachloroethylene				1	1			
	Toluene		13		20	8			
	Chlorobenzene		45		45		-		
7	trans-1,3-Dichloropropene		1	\vdash	1	< 5	-+-		
-	Ethylbenzene				 				
+	cis-1,3-Dichloropropene					 			
-	Styrene			_	 - - - 	 			
-	o-Xylene	1/	1	\ \	1		+		
	*	V	1	-	<u> </u>	- V		•	
A	*						_		
-	*					 			
1	*		-						

*Additional compounds from the EPA's Hazardous Substances List **Other compounds of interest identified, in estimated amounts.

Note on report: "Samples analyzed for priority pollutants in accordance with 40 CFR, Part 136, with results as shown below:

	Ext Date 6// by 1-6
•	Anal Data 625-6126 by RVC
	Check DIA
	UNITS OF REPORTED VALUES MG / Kg
	W Full Priority Pollutant (can /
•	Partial scan (check compounds of interest)

Date Rec'd 6-13 OK'A
Client /os
Due Date

			4	21	., [n	1		15	7					A	tothed		
/	, Analyte	1	4	/:	3	C		8	2	E	1	=	6	_		Blank	T	LLD
	N-nitrosodimethylamine	2	50	2	′ ∞ 0	45	5	410	<i>?</i>)	<i>45</i> 0	1	50	45	_	T			
	Bis(2-chloroethyl)ether	1	1	+	1	1		-70	0	1	+	$\frac{30}{1}$	-5	0	+-	50	15	50
	2-Chlorophenol		T			11		+	_		+	 	\vdash		+-		+-	+
	Pheno1			\top		+		1	_		+				+	+	+	+
	1,3-Dichlorobenzene					\top		1			+		\vdash		+-	+	+	+
	1,4-Dichlorobenzene						\neg	1	_		+		\vdash		+-	+	+	-
	1,2-Dichlorobenzene						\dashv	_		-	+	_		_	+		+	-
	Bis(2-chloroisopropyl)ether						\neg	\neg			+				-	-	-	
	Hexachloroethane										+		_	_	-	-	-	
	N-nitroso-di-n-propylamine						_	_			+		_		+-	-		
	Nitrobenzene						_	+			+			-	+-	-	-	
	Isophorone						+	\neg			+		_		-	+	+	
	2-Nitrophenol						+	\vdash			+			-	-	1	+-	
	2,4-Dimethylphenol						+	+			+			-	+-	+	+-	
	Bis(2-chloroethoxy)methane			\sqcap			\dashv	+			+			-	+-	-		
	2,4-Dichlorophenol			\sqcap			\dashv	+			+		_	-	-	+		
	1,2,4-Trichlorobenzene	18		1	/		7	1			+		_	-	-	+		
	Naphthalene	T		11	00		7	1			+		_	+	-	-	-	
	Hexachlorobutadiene	T			00		\dashv	_	\neg	_	+			\vdash	_	_	-	-
	4-Chloro-m-cresol				1		\dashv	\top	\neg		+			+	_	1	-	-
	Hexachlorocyclopentadiene						+		\dashv		+			+		+	-	-
	2,4,6-Trichlorophenol						1		7	_	+			+	_		-	-
	2-Chloronaphthalene						1		1		+			1	-		-	-
	Acenaphthylene						\top	\top	7		+					+	1	+
1	Dimethylphthalate						1									+	-	+
	2,6-Dinitrotoluene			1	,		1		7		\vdash					1	-	1
	Acenaphthene			3/	10		1							+		1	_	+
	2,4-Dinitrophenol				00		1		\neg					\top				+
	2,4-Dinitrotoluene				1		1		7					+		+		+
	4-Nitrophenol						\top		\dashv					+		1-	-	-
	Fluorene			35	20		1		\forall		1	\vdash		+		1	-	1
	4-Chlorophenyl phenyl ether				90				\neg		1			+		1		+
	Diethylphthalate						\top	1	\dashv			+		+		1		+
	4,6-Dinitro-o-cresol						\top		\top		\vdash	\vdash		+		1		1
	1,2-Diphenylhydrazine													11				1
	4-Bromophenyl phenyl ether						T		1					11		1		1
	Hexachlorobenzene	1				V				1				11		1		1
	Pentachlorophenol	6		1		110	T	V	1					11				+
	Phenanthrene	6	L	24	00	320	I	410		1				1				1
	Anthracene	25	0			90		150		1				1				1
	Dibutylphthalate	45	0			250		4/00	5	V								1
	Fluoranthene	20	O	300	20	390		900	T	80				\vdash				1
	Pyrene	12	0	230	OC	300	1	970	1	60								1
	Benzidine		0	40	00	450		2/00	_	< 50								1
_	Butyl benzyl phthalate			4/		4	T	4		1								
	Benzo(a)anthracene			130		130	1	130						_				
	Chrysene			180	_	450		60					-	1				
_	3,3'-Dichlorobenzidine	1		410		1		-100		V	V	/	V	,				
	Bis(2-ethylhexyl)phthalate	6	3	73				800	\top	340	_	_	116	1				
	N-nitrosodiphenylamine	45	0	4	0	V	1	100		450		50	25	\neg	,			,

/	ANALYTE	A		1	3	C	D	E	F	6	Blank	LLD
	Di-n-octyl phthalate	7	0	230	2	60	150	450	80	190	< 5 0	1,500
	Benzo(b)fluoranthene	4		110		110	450	1	<50	<50	-30	< 500
	Benzo(k)fluoranthene			83		110	330	11	1	10		+
	Benzo(a)pyrene			-	X		460	120	100	70		1
	Indeno(1,2,3-cd)pyrene			44		60	170	450	250	450		+
	Dibenzo(ah)anthracene					450	4/00	1	1	1230		+
	Benzo(ghi)perylene	J	,	44	0	60	180	1	1		1	
	2,3,7,8-Tetrachlorodibenzo- p-dioxin (TCDD)				4.1		100	1			· ·	V
	*Aniline	45	10	418	0	450	4100	450	<50	450	×50	<50
	*Benzoic Acid		1			1	1	1	1	100	750	1 220
	*Benzyl Alcohol							11	++-			1
	*4-Chloroaniline			J				++	++			+
	*Dibenzofuran			2	0			++	++-			+
	*2-Methylnaphthalene			40				++	++-			+
	*2-Methylphenol							++	++-	+++		+
	*4-Methylphenol							++	++-			+
	*2-Nitroaniline							+	++-			
	*3-Nitroaniline							+-	+			+
	*4-Nitroaniline			\vdash			+	1	+	+++		-
	*2,4,5-Trichlorophenol	1	,	1	,	1	1	+ +	+			
	**				_	V	-	+ v	+	Y		1 V
	**						-	+	+			-
	**							+	+	-		
	**	-		_			-	+	+	-		-
	**			-			-	+	+			-
	**	-		-			-	+	+	-		

^{*}Additional compounds from the EPA's Hazardous Substances List **Other compounds of interest identified, in estimated amounts.

Note on report: "Samples analyzed for priority pollutants in accordance with 40 CFR, Part 136, with results as shown below:"

Anal Data (125-612 by BUC	
Check RUC UNITS OF REPORTED VALUES ua Ka	
Full Priority Pollutant scan	
Partial scan (check compounds of	interest)

Client Pis
Due Date

1	, Analyte	#	1:4	1:2	-	12	1	7	E DUE			Blank	LLI
_									,				
	N-nitrosodimethylamine	<2	00	4/00	2	2100	2	00	450	21	-		
	Bis(2-chloroethyl)ether			-	_		_	-	1	_	-		
	2-Chlorophenol				_					_	 		
	Phenol									_	 		
	1,3-Dichlorobenzene						1	<u> </u>		_	 		
	1,4-Dichlorobenzene						2	300					
	1,2-Dichlorobenzene						4	200			1		
	Bis(2-chloroisopropyl)ether												
	Hexachloroethane										 		
	N-nitroso-di-n-propylamine												
	Nitrobenzene												
	Isophorone						Ш						
	2-Nitrophenol												
	2,4-Dimethylphenol												
	Bis(2-chloroethoxy)methane												
	2,4-Dichlorophemol												
	1,2,4-Trichlorobenzene	I	/				1	/					
	Naphthalene	146	00				8	000					
	Hexachlorobutadiene	_	00				4	200					
	4-Chloro-m-cresol	1						1					
	Hexachlorocyclopentadiene												
	2,4,6-Trichlorophenol						T						
	2-Chloronaphthalene	17	/										
	Acenaphthylene	32	20				Т						
	Dimethylphthalate	12					T						
2000	2,6-Dinitrotoluene	1	,	V				V					
	Acenaphthene	30	00	220)		13	500					
	2,4-Dinitrophenol	_	00				1	200					
	2,4-Dinitrotoluene			1			T	1					
-	4-Nitrophenol		,	¥			1	V					
_	Fluorene	129	00	240	5		3	200					_
	4-Chlorophenyl phenyl ether			40			_	200					
	Diethylphthalate		1	1			T	1					
	4,6-Dinitro-o-cresol						T	1					
	1,2-Diphenylhydrazine			F			Т	1					
	4-Bromophenyl phenyl ether						T						
	Hexachlorobenzene						T						
	Pentachlorophenol	1	/	V		V		V					
_	Phenanthrene	94	00	150	0	180	18	900					
	Anthracene					140		500					
	Dibutylphthalate	27	00	210	D	<100	1	200	1	V			
	Fluoranthene	12	100	290	0	<100 290	17	300	9	0			
	Pyrene	141	00	270	0	850	19	000	1110				
	Benzidine			210		400	1	200	25				
	Butyl benzyl phthalate		२००			1	T	4	1	,			
	Benzo(a)anthracene	4	100	140	0	250	4		16	0			
_	Chrysene	52	00	200	0	520		100		0			
	3,3'-Dichlorobenzidine		200			~100	_	200	<5				
	Bis (2-ethylhexyl)phthalate						T						
	The standard of the standard o	13	00	96	0	170		100	53		-	 	-
	N-nitrosodiphenylamine Lοω ρΑΗ	1	200	CIP	20	4/80	1	200	126	50	1		
	10000	177	ONE	1257	0	320	1.7	2100	A	10	-		

✓	ANALYTE	H	1:		16	17	,	E DOD		Blank	LLD
	Di-n-octyl phthalate	4200	12	16	00</td <td>C200</td> <td>0</td> <td>80</td> <td></td> <td></td> <td></td>	C200	0	80			
	Benzo(b)fluoranthene	3300	1/2	00	480	440	5	60			
	Benzo(k)fluoranthene	2900	10	00		340		140			
	Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	3000				470		450			
	Indeno(1,2,3-cd)pyrene	790		00	216	190		1			
	Dibenzo(ah)anthracene	4200		10	4/00	350					
	Benzo(ghi)perylene	720	1.5	00	V	2301		1			
	2,3,7,8-Tetrachlorodibenzo- p-dioxin (TCDD)										
	*Aniline	4200) 2	100	4/00	420	0	450			
	*Benzoic Acid	1	T	1	1		Ĭ	1			
	*Benzyl Alcohol		T	1							
	*4-Chloroaniline	V	T	V		1					
	*Dibenzofuran	1700	1	10		230	0				
	*2-Methylnaphthalene	1300	$\overline{}$	100		290					
	*2-Methylphenol	4200	-	1		420					
	*4-Methylphenol	1	1	1		17	_				
	*2-Nitroaniline		\top	1		1					-
	*3-Nitroaniline		\top	1		+					
	*4-Nitroaniline		+	1					 		-
	*2,4,5-Trichlorophenol	1	+	1	1			1	 		-
	**	-	+	<u>v</u>	- V	+ ×					-
	**		+			+	-				
	**		+				-				-
	**		+			+	-				
	**	1	+		 	+	-		 		-
	**	+	+		-	+	_		-		

^{*}Additional compounds from the EPA's Hazardous Substances List **Other compounds of interest identified, in estimated amounts.

Note on report: "Samples analyzed for priority pollutants in accordance with 40 CFR, Part 136, with results as shown below:"

5590

	t Date 10/18 by FL sis Date 6/26 by Mc			Rec'vd Date OK'J 6- Client PUS Due Date									
L n	all pesticide scan artial scan (check pesticide	of inter			ITO =	UNITS Lower	REPORT Limit	of De	ection.	7			
•	SAMPLE NUMBER	BLANK	ITD	A	0	C	2	E	F	Ed			
	alpha-BHC	10 61	1	ND	ND	ND	ND	ND	ND	M			
	beta-BHC							1	1	1			
	delta-BHC												
	gamma-BHC (lindane)												
	heptachlor												
	aldrin												
	heptachlor epoxide												
	dieldrin												
	4,4'-DDE				\downarrow		1			V.			
	4,4'-DDD				8		3			38			
	endosulfan sulfate				ND		ND						
	4,4'-DDT				39					\ \ \			
	chlordane				ND								
	alpha endosulfan									1.			
	beta endosulfan									K			
	endrin												
	endrin aldehyde		1							1			
	toxaphene	-	50										
	PCB 1016		20							1			
	PCB 1221		1										
	PCB 1232									1			
	PCB 1242									1			
	PCB 1248							1		1			
	PCB 1254			1	1		1	1		1			
	PCB 1260	1	1	. 1			160	11	104	1.			
				1	1	1		+	1	1 \			
					1		1	1	1	1			
				1		1	+						
			1		1	+	+	+		1			
				1	+	+	+	+	+-	1			
			i	1	+	+	+	+		1			

i

Brire Analy Check	Intract Date 1. 16 by FL Inalysis Date 1/10 by MC Client Pos Due Date										
_	full posticide scan				U	NITS R	EPORT_				
U P	Partial scan (check posticide				ITD - I	over I	imit o	of Deter	ctia.		
		Le Rock									
-	SAMPLE NUMBER	BLANK	ITD	G	/-		16/	7			
	alpha-BHC		/	ND	ND	ND	ND	ND			
	beta-BHC		H	1		1	1	1			
_	delta-BHC			1		1	1				
-	gamma-BHC (lindane)	-		1	-	1	1				
-	heptachlor			-		1					
_	aldrin	-				1					
	heptachlor epoxide						1				
<u></u>	dieldrin					1					
_	4,4'-DDE				1	4		4			
_	4,4'-DDD				.6	20		67.			
	endosulfan sulfate				ND	M		ND			
	4,4'-DDT										
	chlordane										
	alpha endosulfan										
	beta endosulfan										
	endrin										
	endrin aldehyde		V								
	toxaphene		50								
	PCB 1016		20								
	PCB 1221										
	PCB 1232	LA .									
	PCB 1242	-									
	PCB 1248										
L	PCB 1254					1					
L	PCB 1260		1.		430	640		190			
,				Y		<u> </u>		7.1			
					1						
					+						
					+		 				

ì

POLYCYCLIC AROMATIC HYDROCARBONS Lab Sheet

Lab No. 89906	Analyst
Client Pos	Chk'd by
Date Rec'd OK & 6-13	
Date Due	

Sample(s) analyzed for Gravimetric Polycyclic Aromatic Hydrocarbons in accordance with Washington State Department of Ecology WAC 173-302. The method requires analysis of the samples through successive stages until the result obtained is less than 1% by weight (as received basis) or until the fourth stage has been completed. Results are as shown below:

% by weight, as received basis*

	T .				Sample	Numbe	r		
	Stage	16	17	ADup	FDuc				
1:	Soxhlet Extraction	.15	.26	.15	.16				
2:	Acid-base clean up	per, ter en						•	
3:	Silica gel chromatography								
4:	High Performance Liquid Chromatography (HPLC) Analysis								

^{*}for 4,5,6 membered rings

Note	analyst: 1) Indicate by a stages which were not performed. 2) Report actual values, not "less than 1%".
*	roup I needs the crude extract (after soxhleting) for halogenated hydro-
M	roup $\overline{\bot}$ needs to share the sample.
47	our group has additional work to perform on these samples. See lab

A	B	C	D	E	le hu		#	T	LLD	
								***	*	
11.8%			328				-:	4		2:8
				ONCENT	RATION	, mg/l				
ND				次 - 1/2 8 - 一 5 所				5	.2	3.0
.3	,3	ND	13	ND	.3	.2	.5	:5	7	100.
ND				遊門譜	1 2 2 2 3		444	September 2	101	3.
ND	. 30	e 1,11 (1861)	754			1000	VIII)	W (14		
			*	4 . **		G TO		0.00		
ND				1000 2000	-10		.4	UN	13	
NO		4.4				Maria se sa			2005	
ND	- 417			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4.5	1.24			
ND:									137	
		12.4	S	ple F		tion !				
	ariv.						Ĭ			16.
V	1	1	1	17	17	17	1	1		
1	V	1/	1/	1	1	1/	1	17		

MASTE DATA SHEET - Inorganics

This sample also has organics on it. Group II will need extract.

ELE- (arti	ilo						為					
	16	\square		39/11/15 3/2/1	THE RESIDENCE OF THE PERSON.	ie Mus	er			LLD	FICL	
		Marie 10	2		37.742.345				*			
pål .			· 设备化			***		· e. Z		4. 5.	Must f	1
				Č	ONCENT	RATION	, mg/L					
Arsentc :	162	ND			7.7.	,	34		iA.	,2	5.0	
Bartum	A PRINTED	16		10.0	700		ij				100.	
Codmium		ND					A. C.		5	0/	1.0	
Chronium	ND	ND	Lale's							M.	5.0	1 2 7
Cr+6				The same		4: 100				12.00	5.0	
Leed	MD			**(3.5)		3.75				31	3.0	
Rencury	NO	The second second second								.005	0.2	
Solunius	ND	22 September 1	-				- 1-7-4 (M	19.16		1,2	1.0	
	IND	ND	· 表示此						7.		5.0	
	1		*9.n. (5	ple l	Prepare	-	The second second				
eration						1000	4 00 00 00 00 00 00 00 00 00 00 00 00 00				4	1
raction	1	1//				17 18	175	1	314			1

This sample also has organics on it. Group II will meed extract

		,		,	Samp	le Nur	nber				,
	A	B	C	D	E	F	6	#	I	LLD	MCL
				(Concent	ratio	n, mg/L	-			
Endrin	ND	_							_	. 0002	0.02
Methoxychlor	Λιο									.00/	10.0
Toxaphene	NP							4		.005	0.5
2,4-D	ND								-	0,005	10.0
2,4,5-TP (silvex)	13	<u> - </u>							->	0.005	1.0
Lindane	NO	_							-5	.0002	0.4
This sample a	lso has	inorg	anics (on it.	Obta	in ext	ract fr	rom Gro	oup I.		
This sample set does not have inorgs. Give sample to Group I to extract make sure information below is completed:									and		
	4		-	Si	ample I	repar	ation L	_og			
Separation]							
Extraction											/
Filtration											

HAZARDOUS WASTE DATA SHEET - Organics

Extraction Type:

D.O.E.
E.P. Toxicity

Lab No. 8990
Date OK.A Client Pas
Analyst Mc | TR
Due Date

Check

HAZARDOUS WASTE DATA	A SHEET	- Org	anics					Lab No. Date	89906	15		
Extraction Type:							(Client Analyst	POS 6-			
D.O.E. D.									Check			
									1			
					Samp	le Num	ber					
	16	17				•			LLD	MCL		
				C	oncent	ration	, mg/	L				
Endrin	NP	μо							,000	0.02		
Methoxychlor	NP	No							.001	10.0		
Toxaphene	No	NO							,005	0.5		
2,4-D	ND	ND							0, 60 5	10.0		
2,4,5-TP (silvex)	1	4							0.005	1 1		
Lindane	NO	No							, 200	0.4		
This sample al	so has	inorga	anics o	on it.	Obtai	n extr	act f	rom Gro	up I.			
This sample se make sure info						sampl	e to	Group I	to extract	and		
				Sa	ample P	repara	tion	Log				
Separation												
Extraction												
Filtration												